:
let x = ½ tan(u)
dx =½ sec²(u) du
∫sqrt(4x² + 1) dx
from 0 to sqrt(1)
½∫sqrt(tan²u + 1) sec²(u) du
= ½∫sec³(u) du
لاحظ اننا ذكرنا تكامل
الصيغة sec^n(u)
ll
= ½[½sec(u) tan(u) +½ ln|sec(u)+tan(u)|]
= ¼[sec(u) tan(u) + ln|sec(u)+tan(u)| ]
but x = ½tan(u)
tan(u) = 2x
sec(u) = sqrt(4x² + 1 ) ... by substitution
¼[2x sqrt(4x² + 1 ) + ln|2x+sqrt(4x² + 1 )|]
from 0 to 1
= ¼[2sqrt(5) + ln|2+sqrt(5)] ≈ 1.4789
let x = ½ tan(u)
dx =½ sec²(u) du
∫sqrt(4x² + 1) dx
from 0 to sqrt(1)
½∫sqrt(tan²u + 1) sec²(u) du
= ½∫sec³(u) du
لاحظ اننا ذكرنا تكامل
الصيغة sec^n(u)
ll
= ½[½sec(u) tan(u) +½ ln|sec(u)+tan(u)|]
= ¼[sec(u) tan(u) + ln|sec(u)+tan(u)| ]
but x = ½tan(u)
tan(u) = 2x
sec(u) = sqrt(4x² + 1 ) ... by substitution
¼[2x sqrt(4x² + 1 ) + ln|2x+sqrt(4x² + 1 )|]
from 0 to 1
= ¼[2sqrt(5) + ln|2+sqrt(5)] ≈ 1.4789
ليست هناك تعليقات:
إرسال تعليق