Pages

الاثنين، 11 يونيو 2012

اثبت ان 561 عدد كارمايكل

 نقول :
على عدد ما n انه عدد كارمايكل اذا وجد عدد طبيعى a
بحيث يحقق : a^(n-1) ≡ 1 (mod n)  ll  لكل gsd(a,n) = 1
اى ان القاسم المشترك الأكبر بين a و n يساوى 1 او بمعنى
آخر كلاً من n وعدد ما a اوليان فيما بينهما .. والآن اذا قمت
بتحليل العدد 561 الى عوامله الأولية تجد ان :

561 = 3 × 11 × 17

نفرض وجود عدد طبيعى a  بحيث :

gsd(a,3) = gsd(a,11) = gsd(a,17) = 1

((بالتطبيق المباشر لمبرهنة فيرما الصغرى نحصل على الآتى))

a² ≡ 1 (mod 3)  , a^10 ≡ a (mod11)  , a^16 ≡ a (mod 17) ll

والآن نأخذ كل تطابق على حدى ونجرى عليه بعض العمليات الجبرية ..

a² ≡ 1 (mod 3) ---> (a²)^280 ≡ 1(mod3) ---> a^560 ≡ 1(mod3) ll

a^10 ≡ 1 (mod 11) ---> (a^10)^56 ≡ 1(mod11) ---> a^560 ≡ 1(mod11) ll

a^16 ≡ 1 (mod 17) ---> (a^16)^35 ≡ 1(mod17) ---> a^560 ≡ 1(mod17) ll


وهذا يؤدى بنا الى أن :  a^560 ≡ 1 (mod 3×11×17)    ll

أى أن : a^560 ≡ 1 (mod 561)        ll

اذاً 561 عدد كارمايكل .

ويمكنك أيضاً بطرق أن تثبت ان 561 هو اصغر عدد كارمايكل

ليست هناك تعليقات:

إرسال تعليق