Pages

الثلاثاء، 17 يوليو 2012

اثبت ان ق(ن،1)+ق(ن،3)+ق(ن،5)+.... = 2^(ن-1)

بإختصار تقصد التوافيق الفردية لعدد طبيعى .
                                                   
                                                     ن    ن
نبدأ من نظرية ذات الحدين : (س+أ)^ن = سيجما  ق أ^ر س^(ن-ر)
                                                    ر=0      ر

بوضع س= 1  ، أ = -1  تحصل على المطلوب

                  ن    ن        
(1 - 1)^ن = سيجما  ق (-1)^ر
                 ر=0      ر

     ن      ن      ن     ن
اذاً :   ق -   ق  +  ق -  ق + ..... = 0
        0      1       2     3

انقل التوافيق ذات العوامل السالبة فى طرف تجد ان .

ن       ن      ن             ن      ن      ن
ق  +  ق +  ق + .... =  ق +  ق +  ق + ...
 0       2      4               1      3      5

بمعنى :

عدد التوافيق الفردية = عدد التوافيق الزوجية

ولكن : عدد التوافيق الزوجية + عدد التوافيق الفردية = 2^ن

نفرض أن عدد التوافيق الزوجية = عدد التوافيق الفردية = ع

اذاً : ع + ع = 2^ن  ومنها 2ع = 2^ن  بقسمة الطرفين 2

            2^ن
اذاً ع = ـــــــــــــــ = 2^(ن-1)
             2


اى أن :

ق(ن،1)+ق(ن،3)+ق(ن،5)+.... = 2^(ن-1)

ليست هناك تعليقات:

إرسال تعليق