Pages

السبت، 29 سبتمبر 2012

كيف نثبت انه يقبل عدد ما القسمة على 4 اذا كان منطوق كلاً من آحاده وعشراته يقبل القسمة على 4 ؟

بوضع العدد فى صورة النظام العشرى هكذا :

ع =  أ₀+أ₁ (10)+...+ أر (10)^ر   حيث ع عدد طبيعى ما ...

أ₀ رقم الآحاد ، أ₁ رقم العشرات ... وهكذا


ع = أ₀+أ₁ (10) + أ₂(10)² + ... + أر (10)^ر

ع = أ₀+أ₁ (10) + ²10[أ₂ + أ₃(10) + ... + أر(10)^(ر-2)]

ولكن 10² = 100 تقبل القسمة على 4 دائماً

وهذا يؤكد لنا أن ²10[أ₂ + أ₃(10) + ... + أر(10)^(ر-2)]
يقبل القسمة على 4 لأن عامله هو 100 .

اذاً يجب ان يقبل أ₀+أ₁ (10)  القسمة على 4 أيضاً

لاحظ : أ₀+أ₁ (10) = منطوق رقم الآحاد والعشرات .

العدد ع يقبل القسمة على 4 اذا وفقط اذا كان أ₀+أ₁ (10)
يقبل القسمة على 4  .

مثال : 136 تقبل القسمة على 4 لأن 36 تقبل القسمة على 4 
 

سأوضح لك الأمر بعدد ما : ليكن العدد هو 1324

العدد 1324 يمكن وضعه فى صورة النظام العشرى هكذا :

1324 = 4 + 2(10) + 3(10)² + 1(10)³

بتقسيم العدد الى جزئين هكذا :

[4 + 2(10)] + [3(10)² + 1(10)³]

بأخذ ²10 عامل مشترك ...

= [4 + 2(10)] + ²10 [3 + 10]

الآن حتى يقبل العدد 1224 القسمة على 4
يجب ان يقبل [4 + 2(10)] + ²10 [3 + 10]
القسمة على 4 .

ولكن : ²10 [3 + 10]  بالفعل يقبل القسمة على 4
لأن ²10 = 100 تقبل القسمة على 4 .

اذاً يجب ان يقبل القوس الثانى أيضاً القسمة على 4

وهو : [4 + 2(10)] = 24  والذى عبارة عن منقطوق رقمى الآحاد والعشرات .

فنقول بإختصار : العدد 1324 قبل القسمة على 4 لأن 24 يقبل القسمة على 4 .

ليست هناك تعليقات:

إرسال تعليق