Pages

الاثنين، 7 نوفمبر 2011

ادرس اشتقاق الدالة الآتية د(س) = أس³ + ب س² + جـ س + د من حيث ...

برهن اذا امتلكت الدالة : د(س) = أس³ + ب س² + جـ س + د
نقطتين حرجتين فان نقطة الانقلاب تقع في منتصف المسافة بينهما واذا امتلكت نقطة حرجة واحدة فقط فهي نقطة انقلاب .
الحل : -



د(س) = أس³ + ب س² + جـ س + د
دَ(س) = 3أس² + 2ب س + جـ
دً(س) = 6أس + 2ب
ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
الإحتمال الأول انها دالة تمتلك نقطتين حرجتين، نساوى المشتقة
الأولى بـ صفر .

3أس² + 2ب س + جـ = 0

الحل بالقانون العام : المميز = جذر(4ب² - 12أجـ) = 2جذر(ب² - 3أجـ)

            -2ب ± 2جذر(ب² - 3أجـ)             -ب ± جذر(ب² - 3أجـ)
س = ـــــــــــــــــــــــــــــــــــــــــــــــــ = ــــــــــــــــــــــــــــــــــــــــــــ
                      6أ                                        3أ

ولكن متصف الإحداثى السينى لهما

     -ب + جذر(ب² - 3أجـ)     -ب - جذر(ب² - 3أجـ)
= ـــــــــــــــــــــــــــــــــــ + ـــــــــــــــــــــــــــــــــــــ
           6أ                               6أ

     -2ب         -ب
= ـــــــــــ = ـــــــــــــــــ
     6أ           3أ

من أخرى نقطة الإنقلاب نستنتجها من خلال تصفير المشتقة الثانية ..
6أس + 2ب = 0  ومنها 6أس = -2ب  ، ومنها  3أس = -ب

                    -ب
ومنها  س = ـــــــــــــــ = نقطة المنتصف للنقطتين الحرجتين ( المطلوب الأول )
                     3أ


المطلوب الثانى اذا تحقق يتحقق معه الآتى :-
يجب ان تكون المشتقة الأولى عبارة عن مربع كامل ( لماذا ؟ )
ولما كانت المشتقة الأولى عبارة عن مربع كامل فإن ما تحت الجذر = 0
او بمعنى ادق المميز = 0

          -ب
س = ـــــــــــ = نقطة المنتصف ( فى المطلوب الأول )
          3أ

وهى بمثابة نقطة انقلاب فى حالة مساواه المشتقة الثانية بـ صفر .



ليست هناك تعليقات:

إرسال تعليق