Pages

السبت، 5 نوفمبر 2011

اوجد النهاية الآتية بدون قاعدة لوبيتال نها(س←2) (3^س - 9)/(2^س - 4)

نفرض ان : 3^س = ص  بأخذ لو الطرفين  لو3^س = لوص ، ومنها س لو3 = لوص
، ومنها  س = لوص/لو3 =  لوص     (( متطابقة (1) فى اللوغاريتمات ))
                                     3

اذاً : 2^س = 2^لوص    =  ص^لو2    (( متطابقة (2) فى اللوغاريتمات ))
                      3                   3

وعندما س = لوص  ، فإن  لوص ← 2   ومنها  ص ← 9
                  3                3

بالتعويض فى النهاية الأصلية وهى : -

                      3^س - 9                                              ص - 9
نهـــــــــــا ـــــــــــــــــــــــــــــــــــــــــــــــ = نهــــــــــــــــــا ـــــــــــــــــــــــــــــــــــــــــ
س←2            2^س - 4                    ص←9         ص^لو2   - 4
                                                                                 3


لاحظ عندما ص ← 9   فإن  جذر(ص) ← 3

                               جذر(ص)  - 3                             جذر(ص) + 3
= نهـــــــــــــــــــــــا ــــــــــــــــــــــــــــــــــــــــــــــــــ × ـــــــــــــــــــــــــــــــــــــــ
   جذر(ص)←3      جذر(ص)^لو2  - 2                  جذر(ص)^لو2  + 2
                                          3                                         3


تعتبر نهايتين مضروبين فى بعض، وعند التعويض فى النهاية الثانية  نجدها = 3\2

                                               جذر(ص)  - 3
= 3\2 × نهـــــــــــــــــا ــــــــــــــــــــــــــــــــــــــــــــ
           جذر(ص)←3       جذر(ص)^لو2   -  2
                                                      3

لاحظ انه يمكن وضع  2 = 3^لو2         (( متطابقة  (3) فى اللوغاريتمات ))   ، وبالتعويض
                                      3

                                              جذر(ص)  - 3              
= 3\2 × نهـــــــــــــــــا ــــــــــــــــــــــــــــــــــــــــــــ
           جذر(ص)←3      جذر(ص)^لو2   -  3^لو2
                                                     3             3

المسألة اصبحت جاهزة تمامً لتطبيق نظرية " 4 "  فى التفاضل ( الإثبات من هنا )

                     1
= 3\2 × ــــــــــــــــــ × 3^(1 - لو2 )
               لو2                    3
                3


        3                    3
= ــــــــــــــــ  × ــــــــــــــــــــــــــ
     2لو2                3^لو2
       3                      3


لاحظ ان :  3^لو2 = 2      بالتعويض
                  3

          9                9
= ــــــــــــــــــــ = ـــــــــــ  لو3
      4 لو2              4     2
          3


وهى نفس النهاية التى ستحصل عليها اذا حليت المسألة 
بقاعدة لوبيتال .. المصدر مأخوذ من حل الأخ Khaled Einstein
على شبكة التواصل الإجتماعى فيسبوك .
















هناك تعليق واحد:

  1. اسلام محمد2 مايو 2012 في 6:56 ص

    3^س=ص لو للطرفين
    س=لو(ص-3)
    10^س=ص-3
    ص=10^س+3 بالتعويض عن ص
    3^س=10^س+3
    بالمثل 2^س
    وبالتعويض عن كل منهما
    نها (10^س -6)/(10^س -2) عندما س ــــ<2
    تساوى(100-6)/(100-2)=94/98=47/49

    ردحذف