Pages

الأحد، 23 سبتمبر 2012

كيف نوجد هذا العدد الذى يقبل تلك الشروط فى قابلية القسمة ؟

عدد يقبل القسمة على 10 ويتبقى 9
ويقبل القسمة على 9 ويتبقى 8
ويقبل القسمة على 8 ويتبقى 7
ويقبل القسمة على 7 ويتبقى 6
.
.
وهكذا
الى ان يقبل القسمة على 2 ويتبقى 1
فما هو هذا العدد ؟
بداية ً نفرض أن هذا العدد هو س، وبترجمة ما
سبق الى مفاهيم أساسية فى نظرية الأعداد
فيتكون لدينا هذا النظام من التطابقات .

(ملحوظة : سأعتبر أن س عدداً طبيعياً)

س+1 ≡ 0 (مود 10)
س+1 ≡ 0 (مود 9)
س+1 ≡ 0 (مود 8)
.
.
.
س+1 ≡ 0 (مود 2)

وكأننا نبحث عن العدد س+1 الذى قبل القسمة
على جميع الأعداد من 1 الى 10 بدون باقٍ .

الإجابة هى المضاعف المشترك الأصغر للأعداد
من 1 الى 10 عن طريقة تحليل كل هذه الأرقام .

2 ، 3 ، 4 = ²2 ، 5 ، 6 = 2×3 ، 7 ، 8 =³2 ، 9 = ²3

10 = 2 × 5

النجد انه تكون لدينا هذه الجموعة من الأعداد الأولية
الفريدة (اى الغير مكررة)

{2 , 3 , 5 , 7}

نأخذ 2 مرفوعة لأكبر أس وكذلك 3 مرفوعة لأكبر أس ... وهكذا

المضاعف المشترك الأصغر = ³2 × ²3 × 5 × 7 = 2520

هذا يعنى أن : س+1 = 2520  ومنها س = 2519

وهذا يعتبر حل ابتدائى لـ س .

اما الحل العام نعممه على بقية المضاعفات الأخيرى
(نلاحظ اننا تعاملنا مع المضاعف المشترك الأصغر فقط)
والتعميم يكون بأخذ مضاعفات المضاعف المشترك الأصغر نفسه .

نضع : س+1 = 2520 ن

حيث ن عدد طبيعى = {1 , 2 , 3 , ...}

ومنها :  س = 2520ن − 1

لتكون مجموعة س هى :

س = {2519 , 5039 , 7559 , 10079 , .....}


والمعنى أن هذه الأعداد الموجودة فى هذه المجموعة
تحقق الشروط المطلوبه فى سؤالك عن طريق اتباع
القاعدة العامة لتوليد هذه الأعداد : س = 2520ن − 1

ليست هناك تعليقات:

إرسال تعليق