• Math background
  • Math background
  • Mathematics background
  • Mathematics background
  • Fundamentals of Statistics
  • Math graphics free wallpaper in free desktop
  • stock vector : math background
  • Math background, discrete math
  • Free Math Background for Powerpoint Slides
  • Royalty-Free (RF) Clipart Illustration of a Math
  • Mathematica -photos of some famous historical figures
  • binary system
  • Pascals triangle.
  • Conic section
  • Welcome to mathematics
  • Taylor polynomials and Taylor series -
  • ... theory of Taylor series to show that the
  • The Unit Circle
  • Graphs of the functions sin(x) and cos(x),
  • GOne of the applications of the zeta function
  • Taylor Series Approximation Illustrated
  • Matematik eğitiminin sağlıklı
  • crazy math(12)
  • crazy math(11)
  • crazy math(10)
  • crazy math(9)
  • crazy math(8)
  • crazy math(7)
  • crazy math(6)
  • crazy math(5)
  • crazy math(4)
  • crazy math(3)
  • crazy math(2)
  • crazy math(1)
  • Mickeys ears are circles which are conic sections
‏إظهار الرسائل ذات التسميات الجبر. إظهار كافة الرسائل
‏إظهار الرسائل ذات التسميات الجبر. إظهار كافة الرسائل

34 شرح قوانين الأسس واللوغاريتمات على e في $\mathbb{R}$

الأربعاء، 24 أبريل 2013 التسميات:

e يسمي العدد النيبيري أو عدد أويلر وهو ثابت رياضياتي ≈ 2.72 وهو عدد غير نسبي (أي لا يمكن وضعه في صورة كسرية a/b حيث كلاً من a,b أعداداً صحيحة، b ≠ 0 حيث لا يجوز القسمة على الصفر، ولكن لماذا هذا العدد تحديداً ؟ • هذا السؤال يشبه لماذا العدد باي تحديداً ؟ فالعدد باي هو ثابت رياضياتي أيضاً يُفيد بأننا لو قسمنا محيط دائرة (أي دائرة) على قطرها تعطينا نسبة ثابتة دائماً ≈ 3.14 أو 22/7 وكل هذه قيم تقريبية لها فهي عدد غير نسبي، وحسب ظني أن ما دعي للعدد e هو موضوع متعلق بإشتقاق الدالة الأسية لن نتحدث فيه الآن حتى لا تتراكم الموضوعات هنا، فقط كل ما نريد أن نركز عليه هو أن e ثابت رياضياتي يساوي تقريباً 2.72 .

عندما نكتب $e^x$ نطلق على e (الأساس) ، x (الأس) حيث x عدد حقيقي .. ويمكن أن تُقرأ e مرفوع للقوة x أو للأس x .. إذاً ما هو موضوع الأسس ؟ • الأسس جاءت لتبسيط العمليات الحسابية على الضرب (المتكرر) ، والضرب جاء لتبسيط العمليات الحسابية على الجمع (المتكرر) ، ولذا يجب أن ندرك جيداً مفهوم الأس قبل الخوض في البراهين، والإثباتات المقدمة عليها ، فضلاً عن الخوض في حل تمارين متعلقة به .

ومن هنا فصاعداً سنتعامل مع (x) كعدد طبيعي ومن ثم التعميم على الأعداد الحقيقية (حيث الأعداد الطبيعية مجموعة جزئية من مجموعة الأعداد الحقيقية IR) من أجل توضيح البرهان فقط حيث أن البرهان سهل جداً لو تعاملنا مع (x) كعدد طبيعي : N = {1,2,3,4,5,...}   l

ما هو الهدف ؟

• الهدف هو الإنتقال من التعامل مع الكائنات الرياضياتية البسيطة إلى كائنات أخرى أعقد منها، حيث تبدو وللوهلة الأولى أنها أقرب إلى الحفظ منها إلى الفهم، ويبدو الأمر أنه مجرد تأديه مجموعة من الخطوات للوصول إلى حل مسألة ما ، ولكن في الحقيقة تعرفنا على هذه القوانين يختصر علينا أداء عمليات حسابية كثيرة جداً، وربما لن نصل الى الحل المطلوب بنفس الكفاءة، ولذا فالرياضيات تهتم بالتعميم كثيراً، ومن قبل ذلك فهي تهتم بالمفاهيم الرياضياتية أكثر ، وهذا شأن أي علم حقيقةًَ لكن لم أجد تعميم بهذا العمق أو وضوح شديد ودقيق جداً في المفاهيم إلا في الرياضيات .

سأبدأ بوضع القوانين (تبعاً للترتيب، حيث كل قانون مبني على الآخر ، ولا يجوز الإنتقال إلى القانون الذي يليه إلا بعد فهم القوانين السابقة له جيداً) وأقوم بشرحها، وفي آخر الموضوع أضعهم جميعاً من أجل التذكير بهم .

أولاً قوانين الأسس :

عندما نكتب $e^5$  فهذا يعني : $e^5 = e \times e \times e \times e \times e $
وبصفة عامة عندما نكتب $e^n$  فهذا يعني أن e مضروبة في نفسها n مرة حيث n عدد صحيح (طبيعي) ، ولكن ماذا لو كان الأسس عدد كسري ؟ .. كي نفهم الأسس الكسرية يجب أن نمر على عدة قوانين منها الجذور ، فعندما نكتب $\sqrt{e}$ فهذا يعني ما العدد الذي لو ضُرب في نفسه مرتين يعطي القيمة e وإذا كتبنا $\sqrt[3]{e}$ فهذا يعني ما العدد الذي لو ضُرب في نفسه ثلاثة مرات يعطي العدد e .. وهكذا بالنسبة للجذور النونية، فيوجد جذر رابع، وخامس، وسادس ... إلخ ، وما علاقة هذا بالأسس الكسرية ؟ • علاقة هذا بالأسس الكسرية أننا سنجد بعد تعرفنا على عدة قوانين أنه يمكن تحويل الجذور إلى أسس كسرية، والعكس صحيح .

نلاحظ أن : $e=e^1$  حيث أن الأس (1) لا يُكتب غالباً .

نلاحظ مرة أخرى :
$e^5 = e \times e \times e \times e \times e = e^{1+1+1+1+1} = e^5$

ماذا نفهم من ذلك ؟

• نفهم أنه عند ضرب الأساسات المتكررة نقوم بجمع الأسس، وهذا هو أول وأهم قانون :

◘ القانون الأول : $e^x e^y = e^{x+y}$  حيث كلاً من x,y أعداداً حقيقية كما سنرى أنه يمكن التعميم على الأعداد الحقيقية بعد فهمنا للأسس الكسرية وعلاقتها بالجذور .

مثال آخر عليه :  $e^3 e^5 = e^{3+5} = e^8$
مثال آخر :
$e^{\frac{1}{2}} e = e^{\frac{1}{2} + 1} = e^{\frac{3}{2}} = e^{1.5}$

وعكس القانون صحيح أيضاً : مثال : $e^5 = e^{2+3} = e^2 e^3$

لقد تعرفنا على ضرب الأساسات المتكررة، بقي أيضاً أن نعرف القسمة، ليكن قسمة e^5  على فهي تعني الآتي :


$\frac{e \times e \times e \times e \times e}{e \times e \times e} = e \times e = e^2$

حيث تم إختصار الثلاث أساسات المتكررة في المقام مع البسط وتبقى لنا أساسين مكررين فقط في البسط، ماذا نفهم من ذلك ؟

• نفهم أنه عند قسمة الأساسات المتكررة نقوم بطرح الأسس، وهذا هو ثاني قانون وهم مهم أيضاً :

◘ القانون الثاني : $\frac{e^x}{e^y} = e^{x-y}$ وعكس القانون صحيح أيضاً .

مثال :  $\frac{e^7}{e^4} = e^{7 - 4} = e^3$
مثال آخر :
$\frac{e^2}{e^{\frac{1}{2}}} = e^{2 - \frac{1}{2}} = e^{1.5}$
مثال(3) : 
$\frac{e^3}{e^5} = e^{3 - 5} = e^{-2}$

هنا في المثال الأخير حصلنا على أس (سالب) ، فما هو مفهوم الأس السالب ؟ .. كي نفهم مفهوم الأس السالب نعتمد على نفس القانون السابق مباشرة ً .. ، وليكن مثالنا الأخير :

قلنا : $\frac{e^3}{e^5} = \frac{e \times e \times e }{e \times e \times e \times e \times e} = \frac{1}{e^2} = e^{-2}$

حيث تم إختصار الثلاث أساسات من e المكررة في البسط مع ثلاثة في المقام، وتبقى لدينا في المقام اثنين من e ، ولهذا ننتقل إلى القانون الثالث :

◘ القانون الثالث :          $\frac{1}{e^x} = e^{-x}$

ولكن هذا القانون يفتح علينا قانون رابع (بسيط جداً)

◘ القانون الرابع هو :  $e^0 = 1$

الإثبات : $\frac{e}{e} = e^{1-1} = e^0 = 1$

كيف علمنا أنها تساوي واحد ؟ من خلال وضعنا e/e حيث أن الشيء على نفسه يعطي واحد (شرط ألا يكون صفر على صفر) فوجدنا (بقوانين قسمة الأساسات المتكررة) انها تعطي e^0 ومن هنا جاء القانون .

◘ القانون الخامس      $(x y)^e = x^e y^e$  وعكس القانون صحيح أيضاً، وهو كما رأينا يقوم بتوزيع الأس على ما بداخل القوس .. كي نفهم القانون بشكل مبسط جداً نحلل المسألة الحسابية الآتية :

l                   (2 × 4)³  = (2×4)(2×4)(2×4) = (2×2×2)(4×4×4) = 2³ × 4³

بإختصار وحتى لا نجري هذه الخطوات مرة أخرى علمنا أنه تم توزيع الأس على عملية الضرب التي داخل القوس .

◘ القانون السادس :    $(e^x)^y = e^{x y}$

ويمكن إجراء التجرية على مثال بسيط ، إعتماداً على القانون الخامس (وهو قانون توزيع الأس على القوس) .. والقانون الأول أيضاً هو جميع الأسس للأساسات المتكررة .

$(e^3)^2 = (e \times e \times e)^2 = e^2 \times e^2 \times e^2 = e^{2+2+2} = e^{2 \times 3}$

ولا أريد أن أستعمل طرقاً في التعميم أكثر من ذلك (بدلالة رموز مثلاً بدلاً من الأرقام والأعداد) حتى يتضح المعنى بسهولة .

نأتي الآن إلى كلاً من القانون السابع والثامن، وهما يُفيدان بأنه إذا تساوت الأسس تساوت معها الأساسات، والعكس صحيح أي إذا تساوت الأساسات تساوت معها الأسس (لكن بشروط معينة كما نعلم أن لكل قاعدة إستثناءات) ، وسأستعمل الرمز <==> للدلالة أنه إذا تحقق الطرف الأيمن تحقق معه الطرف الأيسر ، والعكس صحيح .

◘ القانون السابع : $e^x = e^y \Longleftrightarrow x = y$

مثال : إذا وجدنا معادلة فيها : $e^x = e^3$  فهذا يعني أن x = 3
مثال آخر :
$e^{x - 2} = e^3$
  فهذا يعني أن : x - 2 = 3  ومنها x = 5

◘ القانون الثامن : $x^e = y^e \Longleftrightarrow x = y$

مثال : إذا وجدنا $x^e = 3^e$  فهذا يعني أن x = 3

ولا توجد استثناءات في حالة كان الأس أو الأساس e ..

◘ القانون التاسع : $\sqrt[n]{e^x} = e^{\frac{x}{n}}$

هذه هي الأسس الكسرية (والمتعلقة بالجذور) ، ولكن كيف حصلنا على هذه الصغية ؟ للإجابة على هذا السؤال نأخذ مثال على الجذر التربيعي (لتسهيل الملاحظة) : نفرض أن : $\sqrt{e^x} = e^y$ ونوجد قيمة y ... بعد تربيع الطرفين (نعلم أن التربيع يلغي الجذر التربيعي مثل $\sqrt{2^2} = 2)$ ... ولذا بعد تربيع الطرفين نحصل على : $e^x = (e^y)²$

ومنها :  $e^x = e^{2y}$

الأساس = الأساس = e  إذاً الأس = الأس

أي أن :  2y = x   ومنها  $y = \frac{x}{2}$ 

اذاً :  $\sqrt{e^x} = e^{\frac{x}{2}}$   ونفس الشيء تماماً مع بقية الجذور .. ولكن بدلاً أن نأخذ الجذر التربيعي للطرفين .. نأخذ الجذر النوني للطرفين .

◘ القانون العاشر :   $(\sqrt[n]{e})^x = \sqrt[n]{e^x}$

وإثبات هذا القانون يعتمد على القانون السابق له، والقانون السادس .
$(\sqrt[n]{e})^x = (e^{\frac{1}{n}})^x = e^{\frac{x}{n}} = \sqrt[n]{e^x}$
-----------------------------------------------------------------------------------
ثانياً قوانين اللوغاريتمات (وأخص بالذكر اللوغاريتم الطبيعي ln)

ما هو مفهوم اللوغاريتمات ؟

• لن أخوض في تفاصيل كثيرة يُمكن أن تشتت التفكير، ولكن سأوضح في عجالة مفهوم اللوغاريتمات (لا سيما اللوغاريتم الطبيعي Ln)

عندما نحل مسألة من هذا النوع :  $e^x = 2^3$  وهي معادلة تعني ما هي القوي التي أرفها إلى العدد e تعطيني 2³ (أو 8) .. لو حلحلنا هذه المعادلة بقوانين الأسس فقط فلن يتأتي لنا ذلك؛ لأن الأس لا يساوي الأس، ولا أساس يساوي الأساس .. إذا ما الحل هنا ؟ الرياضيات لا تعني كثيراً بالحل (العددي) في مثل هذه المواقف، والمقصود بالحل العددي أي أن أقول x = كذا (أي كذا عدد حقيقي، ولكن 2 ، نصف أي شيء) ، ولكن يمكن القول بأن x تعطيني كائن رياضياتي (ذو قيمة عددية طبعاً لكن لا نعرفها تحديداً) وهذا الكائن الرياضياتي أطلقنا عليه اللوغاريتم، وبعد أن نعطي لهذا اللوغاريتم (ماهيته - أي صفاته وخصائه التي تنطبق عليه) .. أما إعطاء القيمة العددية فيمكن اللجوء إلى فرع في الرياضيات يسمى التحليل العددي، بحيث هذا التحليل يمكن أن يعطينا قيمة تقريبية لـ x ، ولكن هذا حالياً غير مهم، فالأهم هو أن نضع x في قالب أو كائن رياضياتي يسمى (لوغاريتم) .

ندقق مرة ثانية في العبارة السابقة، فنجد أن قيمة x هي العدد الذي لو كان (أس) للأساس e لأعطى القيمة 2³ (فقط هكذا انتهى الموضوع رياضياتياً !) هذه هي قيمة x (ذهنياً) ، ولكن رمزياً نعبر عنها باللوغاريتمات، فنقول : $x = log_e(2^3) = \ln(8)$ 

وتقرأ : لوغاريتم 2 أس 3 للأساس e أو لوغاريتم 8 للأساس e أو اللوغاريتم الطبيعي للعدد 8 ، وهذا اللوغاريتم (أي الطبيعي) نظراً لشهرته الكبيرة في الرياضيات تم إختصاره إلى Ln .. وإلا فيوجد لوغاريتمات لأساسات أخرى غير e (يمكن أن نضع عوضاً عنها أي عدد حقيقي موجب) .. ربما يسأل سائل وماذا نستفيد من ذلك ؟

• الإستفادة الحقيقية تكون في القوانين المستنتجه على اللوغاريتمات (طبعاً بعد مفهومنا له جيداً) بحيث يمكن إختصار العبارات الرياضياتية المعقدة باللوغاريتمات، ومن ثم تحويل اللوغاريتم الى قيمة عددية كما يحلو لنا الأمر (إذا الخلاصة هي أننا نتعامل مع بنى رياضياتية) .

ولذا فأول قانون (وهو قانون لا يستند إلى قوانين أخرى لأنه قانون وضعي، أي وضع ليحل مشكلة لا أكثر تبعاً لمفهوم طبقناه عليه) .

◘ القانون الأول :  $ln(x) = y \Longleftrightarrow x = e^y$

وهذا القانون يعني التحويل من الصورة اللوغاريتمية إلى الصورة الأسية، والعكس ، وهو يعني إذا كان : $\ln(x) = y$ فإن $x = e^y$ والعكس صحيح .. حيث أن الطرف الأيسر يترجم الأيمن، والعكس صحيح .. ولنبدأ من الطرف الأيمن، والذي يعني ما العدد (y) الذي لو كان أساً للأساس e يعطينا القيمة x فنجد أنه يفسر الجهة اليسرى تماماً فـ y عبارة عن اللوغاريتم الطبيعي للعدد x .. ولكن كيف نحفظ هذا القانون من أجل التعامل به بشكل سريع في العمليات الجبرية ؟ .. الصيغة اللوغاريتمية هي ln(x) = y  كي نحولها الى صيغة أسية نأتي بـ e (الأساس) ونجلها أساساً لعدد y (أي نعكس فنحول y من أساس الى أس للأساس e) وطبعاً هذه الخطوة تتطلب منا الغاء اللوغاريتم، فالصيغة الأسية قد حلت مكانه .

إذاً (وطبقاً للقانون السابق) كيف نحول العكس ؟ أي من صيغة أسية إلى صيغة لوغاريتمية ؟

ليكن لدينا : $x = e^y$  والتي ينبغي أن تعطي $\ln(x) = y$ طبقاً للتعريف (أو القانون الأساسي الأول) .. نحن الآن نتعامل مع معادلة :

الطرف الأيمن = الطرف الأيسر

هذا يعني أن : ما يُطبق على الطرف الأيمن يطبق بالمثل على الطرف الأيسر ، فإذا طرحنا 1 من الطرف الأيمن من المعادلة نطرح 1 أيضاً من الطرف الأيسر ، وهكذا بالنسبة للجمع ، والقسمة والضرب ، بل وجميع العمليات الجبرية بما فيها اللوغاريتمات وهذا أمر طبيعي لا يحتاج توضيح .

لدينا : $x = e^y$  فنقول بأخذ اللوغاريتم الطبيعي للطرفين :

$\ln(x) = \ln(e^y)$    ولكن التعريف الذي وضعناه يقول : $\ln(x) = y$

هذا يعني أن : $\ln(e^y) = y$  وهنا نستخلص قانونين، لكن بعد أن نعرف الخطوات التي حدثت ... ln(e^y)  = yln(e) = y*1 = y  إذا أثبتنا أن ln(e) = 1  فتكون خطوة وضع الأس مضرباً في اللوغاريتم صحيحة، وبالفعل فإن :  $\ln(e) = log_e(e) = 1$ كيف عرفنا أنه يساوي 1 ؟ نحوله إلى الصيغة الأسية بهذه الطريقة : نفرض أن : ln(e) = y ومنها e = e^y .. فهنا نجد أن الأساس = الأساس .. إذاً الأس = الأس .. أي أن : y = 1  إذاً : ln(e) = 1  ,,, ونخرج من هذا (طبعاً على عجالة في الشرح) بقانونين مهمين في اللوغاريتمات أيضاً .

◘ القانون الثاني : $\ln(e) = 1$

◘ القانون الثالث :  $\ln(x^e) = e \ln(x)$    

مثال آخر على القانون الثالث :  $\ln(2^3) = 3 \ln(2)$  والعكس صحيح .

وأيضاً طبقاً لهذا القانون فإن : $\ln(\frac{1}{e}) = \ln(e^{-1}) = -\ln(e) = -1$

حيث تم إستعمال القانون الثالث، وقاعدة من قوانين الأسس، وهي :     $\frac{1}{e} = e^{-1}$

يمكن أن نخرج من القانونين السابقين بنتيجة وهي أن : Ln(1) = 0  حيث : $\ln(1) = \ln(e^0) = 0 \times \ln(e) = 0 \times 1 = 0$
بقي لنا أشياء يسيرة جداً، وهي إجراء العمليات الحسابية (الأربعة) على اللوغاريتمات (الجمع ، الطرح ، الضرب ، القسمة) .

◘ القانون الرابع : $\ln(x) + \ln(y) = \ln(x y)$ 

مثال : $\ln(2) + \ln(3) = ln(2 \times 3) = \ln(6)$

كي نتحقق من صحة هذا القانون نقوم بتحويل اللوغاريتمات إلى الصورة الأسية، وبعدها نحولها مرة أخرى الى الصيغة اللوغاريتمية، مستخدمين في ذلك قوانين الأسس، وقوانين اللوغاريتمات الثلاثة السابقة الذكر .

نفرض أن $\ln(x) = m$  ومنها  $x = e^m$
نفرض أن
$\ln(y) = n$
  ومنها  $y = e^n$

بالتعويض في الطرف الأيمن ...

$\ln(x y) = \ln(e^m e^n) = \ln(e^{m+n}) = (m+n) ln(e) = m + n$

ولكن : $m + n = \ln(x) + \ln(y)$ وهذا شيء كافٍ لإثبات صحة المتطابقة (أي القانون الرابع) حيث أثبتنا أن الطرف الأيمن يحقق الطرف الأيسر) .. وهذا القانون هام جداً حيث أنه يحول من جميع إلى ضرب والعكس صحيح، ولكن ينبغي ملاحظة انه في حالة الضرب يكون هناك ln واحدة فقط، اما في حالة الجمع فيوجد ln لكل حد ... ملاحظة أخرى هذا القانون ينطبق على أكثر من حد .

مثال :  $\ln(x) + \ln(y) + \ln(z) = \ln(x y z)$ ,طبعاً عكس القانون صحيح .

◘ القانون الخامس : $\ln(x) - \ln(y) = \ln(\frac{x}{y})$

وإثباته سهل جداً بمجرد الإعتماد على القانون الذي قبله، وكذلك عكس القانون الثالث حيث $\ln(y^{-1}) = -\ln(y)$  هذا يعني الآتي :

$\ln(x) - \ln(y) = \ln(x) + \ln(y^{-1}) = \ln(x) + \ln(\frac{1}{y}) = ln(\frac{x}{y})$

حيث تم استعمال قاعدة جمع اللوغاريتمات حيث ضربنا x في مقلوب y .

اما عند ضرب اللوغاريتمات فلا نصنع شيء، فمثلاً ln(x) ln(y) l  ليس لها قانون محدد ، ولكن يمكن تطبيق القوانين سابقة الذكر عليها ، فمثلاً يمكننا القول بأن : $\ln(x) \ln(y) = \ln(x)^{ln(y)}$    حيث تم تطبيق القانون الثالث عليها..وهكذا .

◘ القانون السادس : $\frac{\ln(x)}{\ln(y)} = log_y{x}$

,هذا القانون كما رأينا قد الغى تماماً اللوغاريتم الطبيعي وأعطانا لوغاريتم آخر للأساس y (ولا يستعمل هذا القانون الا اذا تطلب الأمر ذلك) .. وإثباته يكون بتحويل كلاً من ln(x) , ln(y) إلى الصيغة الأسية، ثم العكس .
بالطبع يوجد قوانين أخرى لكن هذه أهمها ...

ولكن هناك عدة ملاحظات :

الملاحظة الأولي : عندما يمكن تبديل x , y بأي دالة، مثلاً يمكن أن نضع بدلاً من x دالة أخرى في x أيضاً ، وكذلك بالنسبة لـ y .

الملاحظة الثانية : اذا كنا نتعامل مع اللوغاريتمات ذات القيم الحقيقية فلا يمكن أن يكون ما بداخل اللوغاريتم عدداً سالباً ...

مثال : $\ln(-n)$  حيث n عدد طبيعي موجب ... ماذا يساوي ؟

نحوله الى الصيغة الأسية، فنفرض أنه يساوي y .

$\ln(-n) = y$   ومنها :  $-n = e^y$

ولكن $e^y$ يجب أن تعطي عدداً موجباً دائماً من أجل y عدد حقيقي، يمكن رسم دالة $e^x$ والتحقق من ذلك بنفسك، ولذا فلا حل هنا (في مجموعة الأعداد الحقيقة) .

الملاحظة الثالثة : $\ln(0)$ غير معرفة على مجموعة الأعداد الحقيقية، ولكن يتعامل معها البعض على أنها سالب مالانهاية .

الملاحظة الرابعة : يمكن الإعتماد على هذا الموقع للتأكد من الحلول :


بوضع صيغة المعادلة (مثلاً) في مربع البحث .

مما سبق فإن أهم : {قوانين الأسس واللوغاريتمات على e} هي :

◘ $e^x e^y = e^{x+y}$
◘ $\frac{e^x}{e^y} = e^{x-y}$
◘ $\frac{1}{e^x} = e^{-x}$
◘ $e^0 = 1$
◘ $(x y)^e = x^e y^e$
◘ $(e^x)^y = e^{x y}$
◘ $e^x = e^y \Longleftrightarrow x = y$
◘ $x^e = y^e \Longleftrightarrow x = y$
◘ $\sqrt[n]{e^x} = e^{\frac{x}{n}}$
◘ $(\sqrt[n]{e})^x = \sqrt[n]{e^x}$
◘ $ln(x) = y \Longleftrightarrow x = e^y$
◘ $\ln(e) = 1$
◘ $\ln(x^e) = e \ln(x)$
◘ $\ln(x) + \ln(y) = \ln(x y)$
◘ $\ln(x) - \ln(y) = \ln(\frac{x}{y})$
◘ $\frac{\ln(x)}{\ln(y)} = log_y{x}$

                         {مسائل تطبيقية}
1) بين أنه : $\ln(e^2) - 2\ln(\frac{1}{e}) - 4 = 0$

• الحل : $\ln(e^2) - 2\ln(\frac{1}{e}) - 4 = 2\ln(e) - 2\ln(e^{-1}) - 4 \\ = 2\ln(e) + 2\ln(e) - 4 = 2+2-4 = 0$

2) حل في $\mathbb{R}$$\ln(3x+2) = 1$

• الحل :
$3x+2 = e^1 = e \Longrightarrow 3x = e - 2 \Longrightarrow  x = \frac{e - 2}{3}$

3) حل في  $\mathbb{R}$ المتراجحة : $e^{2x+5} - e^{4x} > 0$

الحل : نقوم أولاً بإيجاد حالة المساواه كالآتي :

$e^{2x+5} - e^{4x} = 0 \Longrightarrow e^{2x+5} = e^{4x} \\ 2x+5 = 4x \Longrightarrow 2x = 5 \Longrightarrow x = 2.5 $

والآن نشأ لدينا فترتين أساسيتين وهما : $]-\infty , 2.5[$ و الثانية $]2.5 , \infty[$ 
نأتي في الفترة الأولي ونختر أي عدد ينتمي إليها، وليكن 0 ونعوض به، ونتحقق هل هو يحقق
المتراجحة ؟ بعد التعويض بـ x = 0  نحصل على : $e^5 - e^0 = e^5 - 1$ وهذه القيمة
بلا شك أكبر من الصفر ، وهذا يعني أن الفترة $]-\infty , 2.5[$ تحقق المتراجحة .. بالمثل
نأتي في الفترة الثانية، ونختر منها عدد ينتمي إليها وليكن 3 .. وبعد التعويض نحصل على
الآتي : $e^{11} - e^{12}$  وهذه قيمة سالبة بلا شك حيث طرحنا قيمة صغيرة من قيمة
أكبر منها، ونعلم ان السالب لا يكون أكبر من الصفر ، وبالتالي هذه الفترة لا تحقق المتراجحة،
فيكون الحل هو : x < 2.5           

4) نعتبر الدالة العددية f دالة عددية معرفة على $]0 , \infty[$ بما يلي : $f(x) = 2\ln(x) + x$

a) إحسب كلاً من $f(1)$ و $f(e)$
b) إحسب نهاية الدالة عندما تؤول x الى الصفر ، وعندا تؤول الى مالانهاية .
c) بين أنه لكل x من $]0 , \infty[$ لدينا : $f^\prime(x) = \frac{2+x}{x}$
ثم إدرس إشارة المشتقة الأولى، وإبحث إطراد الدالة .
d) بإستعمال منحنى f حدد حلول المتراجحة $2ln(x)+x-1 > 0$
-----------------------------------------------------------

• المطلوب الأول : $f(1) = 2\ln(1) + 1 = 0 + 1 = 1$
و : $f(e) = 2ln(e) + e = 2+e$

المطلوب الثاني : يمكن إيجاده هندسياً (من خلال الرسم) ، أو إيجاده جبرياً (بقوانين النهايات الأساسية)، ولكن هندسياً نجده
أسهل، حيث أنه من الواضح جداً من خلال الرسم أن x عندما
تؤول الى الصفر فإن f تؤول إلى سالب مالانهاية ، وأن x
عندما تؤول إلى مالانهاية فإن f أيضاً تؤول الى مالانهاية .

• المطلوب الثالث : يريد منا إيجاد المشتقة الأولى للدالة، وهنا لا بد من معرفة قانون إشتقاق اللوغاريتم الطبيعي .. مع علمان أن مشتقة x هي 1 .

اذا كانت $f(x) = \ln(x)$ فإن $f^\prime(x) = \frac{1}{x}$ ولن الجأ إلى البرهان لأنه يحتاج إلى موضوع منفصل وحده .

نفهم مما سبق أن : $f^\prime(x) = \frac{1}{x} + 1 = \frac{2+x}{x}$ وطبعاً هذا بعد توحيد المقامات .
ونجد أن إشارة المشتقة الأولى موجبة دائماً (أي بعد التعويض بـ x عدد موجب فتعطي كسراً قيمته موجبة أيضاً،
وهذا لأن مجال الدالة ينحصر في فترة موجبة من 0 الى موجب مالانهاية .. أما إطراد الدالة، فهي تزايدية على مجالها
وهذا يظهر واضحاً من الرسم، بأن نأتي إلى أقصى شمال الدالة، ثم نسير يميناً، فنجد أنه كلما سرنا يميناً فإن المنحنى
يصعد الى أعلى، وهذا دلل كافي على أن الدالة تزايدية على مجالها .

المطلوب الرابع : يمكن تحويل المتراجحة إلى : 2ln(x) + x > 1 والتي تعني : f(x) > 1
من خلال الرسم يظهر الحل وهو عندما تكون :  x > 1
===================================================
5) حل المعادلة : ln(x-2) + ln(x+2) - ln(6x-13) = 0

الحل : نحول 0 الى ln(1) ونستعمل قوانين اللوغاريتمات المعروفة، فتطعينا الشكل التالي .

$$ln(\frac{(x + 2)(x - 2)}{6x - 13}) = ln(1)$$

وهذا يفيد بأن : $\frac{(x + 2)(x - 2)}{6x - 13} = 1$

مما يعني أن : $(x + 2)(x - 2) = 6x - 13 $

وبعد فك الأقوس (وتجميع الحدود المشابهة) نحصل على الآتي : $x^2 - 6x + 9 = 0$
ولكن هذا عبارة عن مربع كامل (يمكن ان نعرف ذلك من خلال التحلل) .. فيعطي :
$(x-3)^2 = 0$  مما يعني أن : x - 3 = 0   ومنها :  $x = 3$

 
تابع القراءة

5 ما هو إثبات صيغة كاردان، وكيفية وضع الصيغة في صورة مبسطة ؟

السبت، 20 أبريل 2013 التسميات: ,

يمكن ذكر الخطوات سريعاً، مع العلم أنه يفضل أن تكون ملم بقوانين الأعداد المركبة الأساسية،
مثل الجذور التكعيبية للواحد الصحيح وهي 1 ، أوميجا ، أوميجا² وإذا لم تكن تعرفها يمكنك
البحث عنها في الإنترنت، لأن هذا يساعدنا في حل مسائل من هذا النوع  z³ = a .

الصيغة العامة للمعادلة التكعيبية هي : $ax^3+bx^2+cx+d=0$
وبفرض  x = y + t  .

هكذا :  $a(y+t)^3+b(y+t)^2+c(y+t)+d=0$

ولكن حتى أختصر عليك الأمور .. وُجد أنه (بعد التعويض) أن القيمة المناسبة
لـ t هي : $\frac{-b}{3a}$ والتي تجعل معامل y² صفراً ..


أي نضع : $x = y - \frac{b}{3a}$
وبعد التعويض وتنظيم الحدود وتنسيقها ينشأ لدينا المعادلة الآتية في y  .

$$y^3+ky+m=0$$

حيث : $k = \frac{-b}{3} + \frac{c}{a}$  و  $m = \frac{2b^3}{27a} - \frac{bc}{3} + \frac{d}{a}$

وفي حقيقة الأمر إذا أردت أن تحصل على صيغة كاردان في صورة مبسطة، فلا
يهمنا قيمة كلاً من k , m بدلالة معاملات المعادلة التكعيبية  حيث أننا علمنا هكذا
أن k هي معامل y وأن m هي الحد المطلق، وهذا - طبعاً - بعد التعويض عن x = y - b/3a .

والآن نكرر الخطوة سابقة الذكر مرة ثانية ...
بوضع y = f + g

$$(f + g)^3 + k(f + g) + m = 0$$

وبعد فكك إياه (وتجميع الحدود المشابهة نحصل على الآتي)

$$f^3 + g^3 + (3fg + k)(f + g) + m = 0$$

ثم نضع شرطاً للتبسيط وهو أن نضع : $(3fg + k) = 0$
فكأننا نريد أن نقول y = f + g  والتي تجعل : $(3fg + k) = 0$
ومنها نحصل على : $fg = \frac{-k}{3}$  بتكعيب الطرفين : $f^3g^3 = \frac{-k^3}{27}$
وقد قمنا بتكعيب الطرفين حتى يسهل حلها مع المعادلة الثانية التي
نتجت بعد وضعنا $(3fg + k) = 0$  وهي$f^3 + g^3 = -m $

وبعدها يتكون لدينا هذا النظام في f³ , g³ .

$$f^3 + g^3 = -m \qquad \Longrightarrow (1)$$
$$f^3g^3 = \frac{-k^3}{27} \qquad \Longrightarrow (2) $$

يمكنك حلها بطريقة التعويض، أو بأن تفرض متغيراً z
(ونكون المعادلة التربيعية بمعلومية مجموع الجذرين وحاصل ضربهما)

$$z^2 + mz - \frac{k^3}{27} = 0$$

الحل يكون بالقانون العام للمعادلة التربيعية ... نوجد المميز أولاً لأنه يعتبر
مرحلة هامة في خطوات الحل، والتي سنحدد منها ما هو عدد الحلول الحقيقية
والمركبة في حالة كان المميز أكبر من الصفر أو أصغر من الصفر أو يساوي
صفراً .. نعطى رمزاً للمميز . وليكن $\Delta$ .


$$\Delta = m^2 + \frac{4k^3}{27}$$

وللتذكرة مرة أخرى m هي الحد المطلق ، k هي معامل y .

ومن هنا فإن : $g^3 = \frac{-m - \sqrt{\Delta}}{2}$ and $f^3 = \frac{-m + \sqrt{\Delta}}{2}$

ومنها : $g = \frac{\sqrt[3]{-m - \sqrt{\Delta}}}{\sqrt[3]{2}}$ and $f = \frac{\sqrt[3]{-m + \sqrt{\Delta}}}{\sqrt[3]{2}}$

ولكن هذا مجرد حل أول فقط، فكما تعلم أن معادلة من هذا النوع z³ = a
لها ثلاث حلول وهي (حسب ما ذكرنها) : $\sqrt[3]{a}$ و $\omega \sqrt[3]{a}$ و $\omega^2 \sqrt[3]{a}$ . حيث :
$$\omega = \frac{-1 + \sqrt{3}i}{2} = e^{\frac{2\pi}{3}i}$$
$$\omega^2 = \frac{-1 - \sqrt{3}i}{2} = e^{\frac{-2\pi}{3}i}$$

من هنا فإن :

حلول f هي : $\frac{\sqrt[3]{-m + \sqrt{\Delta}}}{\sqrt[3]{2}} and \frac{\omega \sqrt[3]{-m + \sqrt{\Delta}}}{\sqrt[3]{2}} and \frac{\omega^2 \sqrt[3]{-m + \sqrt{\Delta}}}{\sqrt[3]{2}} $

حلول g هي : $\frac{\sqrt[3]{-m - \sqrt{\Delta}}}{\sqrt[3]{2}} and \frac{\omega \sqrt[3]{-m - \sqrt{\Delta}}}{\sqrt[3]{2}} and \frac{\omega^2 \sqrt[3]{-m - \sqrt{\Delta}}}{\sqrt[3]{2}} $

ولكن هذه الحلول تنتج لنا 9 حلول (مع إهمال الترتيب كزوج مرتب) ممكنة
، ولكن إكتشفنا بعد ذلك أن هناك ثلاثة منهم فقط يحقق المعادلة (1) ، (2) معاً .
وكانت هذه الحلول هي كالتالي :

$$f \qquad \qquad ,  \qquad \qquad  g$$

$$\frac{\sqrt[3]{-m + \sqrt{\Delta}}}{\sqrt[3]{2}} \qquad , \qquad \frac{\sqrt[3]{-m - \sqrt{\Delta}}}{\sqrt[3]{2}} $$
$$\frac{\omega \sqrt[3]{-m + \sqrt{\Delta}}}{\sqrt[3]{2}} \qquad , \qquad \frac{\omega^2\sqrt[3]{-m - \sqrt{\Delta}}}{\sqrt[3]{2}} $$
$$\frac{\omega^2 \sqrt[3]{-m + \sqrt{\Delta}}}{\sqrt[3]{2}} \qquad , \qquad \frac{\omega\sqrt[3]{-m - \sqrt{\Delta}}}{\sqrt[3]{2}} $$

ولكن y = f + g   و  x = y - b/3a   ومن هنا نجد أن حلول x هي :

$$x_1 = \frac{\sqrt[3]{-m + \sqrt{\Delta}} + \sqrt[3]{-m - \sqrt{\Delta}}}{\sqrt[3]{2}} - \frac{b}{3a}$$
$$x_2 = \frac{\omega \sqrt[3]{-m + \sqrt{\Delta}} + \omega^2 \sqrt[3]{-m - \sqrt{\Delta}}}{\sqrt[3]{2}} - \frac{b}{3a}$$
$$x_3 = \frac{\omega^2 \sqrt[3]{-m + \sqrt{\Delta}} + \omega \sqrt[3]{-m - \sqrt{\Delta}}}{\sqrt[3]{2}} - \frac{b}{3a}$$

والذي جعلني أفكر في التبسيط بهذه طريقة المنظر الذي هالني من كبر
القانون (على ويكيبيديا) بشكل مفرط فيه جداً (انظر هنا - دالة تكعيبية) .
ولهذا ادعو كل من يهمه الأمر أن يجرب هذه الصيغة مرات متعددة في
حل معادلات تكعيبية متنوعة كي يتثبت بنفسه من صحته .

                                {عدد و طبيعة الحلول تبعاً لقيمة المميز}

بعد تحويل المعادلة من الدرجة الثالثة إلى الصورة : $y^3 + ky + m = 0$

حيث المميز : $$\Delta = m^2 + \frac{4k^3}{27}$$
                                      
                           {في حالة كان المميز > 0}    

• حل حقيقي، وهو $x_1$ + حلان مركبان .

                           {في حالة كان المميز < 0}

• جميع الحلول حقيقية (بدون تكرار) .

                          {في حالة كان المميز = 0}

• جميع الحلول حقيقية (مع تكرار 2 منهم على الأقل، إن لم يكن جميعهم) .

نحصل على حلين مكررين فقط عندما :$m^2 = \frac{-k^3}{27}$ حيث : $x_2 = x_3 = \frac{\omega \sqrt[3]{-m} + \omega^2 \sqrt[3]{-m}}{\sqrt[3]{2}} - \frac{b}{3a}$
نحصل على الثلاثة حلول مكررة عندما : $m = k = 0$ حيث : $x_1 = x_2 = x_3 = \frac{-b}{3a}$

والصيغة لديك ويمكنك التأكد من ذلك بنفسك ...

وفي الحقيقة إذا تأكد لنا في معادلة تكعيبية أن :  $m = k = 0$
فهذا يعني أننا نتعامل مع منشور ذات الحدين ذي الأس 3 ، ولذا
يمكن تحويل المنشور إلى الصيغة : $(x + \frac{b}{3a})^3 = 0$

                                     {قوانين مساعدة}

• $Z = a + ib = |z| [\cos(t)+i\sin(t)] = |z| e^{it}$

• $[e^{it}]^r + [e^{-it}]^r \,\, \in \,\, \mathbb{R}$

de Moivre's formula
تابع القراءة

2 اذا كانت أ,ب,ج,د فى تناسب متسلسل فاثبت ان: (أ - د)/(أ+ب+ج) = (أ-2ب+ج)/(أ - ب)

الجمعة، 23 نوفمبر 2012 التسميات:

أ ب جـ د فى تناسب متسلسل ... اذاً

 أ         ب       جـ
ـــــــ = ـــــــ = ـــــــ = م  حيث م ثابت التناسب
 ب       جـ        د

هذا يعنى حسب قانون التناسب المتسلسل، والذى
اذا اردت اثباته  (سأضعه لك) ، وهو بالمناسبة يعتمد
على التناسب العادى مع اجراء بعض التعويضات البسيطة .

أ = د م³ ، ب = د م² ، جـ = د م

                      أ - د            د م³ - د
الطرف الأيمن = ـــــــــــــــ = ــــــــــــــــــــــــ
                    أ+ب+جـ     دم³ + دم² + دم

       د(م³ - 1)             م³ - 1
= ــــــــــــــــــــــــــ = ــــــــــــــــــــــــ
  دم(م² + م + 1)     م(م² + م + 1)

حلل البسط كفرق بين مكعبين ...

   (م - 1)(م² + م + 1)         م - 1
= ـــــــــــــــــــــــــــــــــــ = ــــــــــــــــ
      م(م² + م + 1)               م

                    د م³ - 2 د م² + د م
الطرف الأيسر = ــــــــــــــــــــــــــــــــــ
                        د م³ - د م²

   دم(م² - 2م + 1)      م² - 2م + 1
= ـــــــــــــــــــــــــــ = ــــــــــــــــــــــــــ
     دم²(م - 1)              م(م - 1)

حلل البسط كمربع كامل ...

     (م - 1)²          م - 1
= ـــــــــــــــــــ = ــــــــــــــــ
    م(م - 1)             م

من هنا يتبين ان الطرف الأيمن = الطرف الأيسر   #
تابع القراءة

0 ما هو آحاد العدد 3^139 ؟

الاثنين، 19 نوفمبر 2012 التسميات: ,

سأبدأ من سؤال آخر وهو اوجد آحاد 91 وهذا سؤال
سهل للغاية ، فالآحاد هنا هو 1 ولكن يمكننا معرفة
ذلك عن طريق القسمة على 10 ، فباقى قسمة 91
على 10 هى 1 ولأن باقى القسمة 1 اذاً آحاد 91 هو 1 .

ما سبق هو البادئة التى سنعتمد عليها فى الحل ....

الآن نقوم بقسمة 3^139 على 10 ولكن بالتدريج ...

فنقول باقى قسمة 3^4 على 10 هو 1 لماذا ؟
لأن 3^4 = 81 وعند قسمتها على 10 يكون الباقى 1 .

هذا يعنى اننا مهما رفعنا العدد (3^4) الى اى عدد موجب طبيعى
سيكون أيضاً باقى قسمته على 10 هو 1 ، لكننا نريد 3^139
فنقول ما العدد الذى لو ضُرب فى 4 يعطى عدد قريب من  139 ؟

انصحك بإستعمال الآلة هنا .. اكتبى مثلاً 4 × 30 يظهر
الناتج على الآلة 120 مازال العدد بعيداً عند 139 ... الى
ان تصلى (ومع التجربة المتكررة) الى أن  4 × 34 = 136
وهى تقارب معقول نحو 139.... هذا يعنى ان آحاد العدد
(3^4)^34 = 3^136 هو 1 ..

نعلم انه فى حالة تشابهه الأساسات نقوم بجمع الأسس ...

نقوم بضرب 3^136 فى ³3  فيكون :

3³ × 3^136 = 3^139  هذا يعنى ان باقى قسمة

3^139 على 10 يكافىء باقى قسمة ³3 على 10

نعلم أن ³3 = 27  وباقى قسمتها على 10 هو 7 .

اذاً آحاد العدد 3^139   هو  7  .

(ملحوظة يمكن ترتيب حل المسألة عن طريق الطابقات
ولكن من خلال قرآتى لملفك الشخصى تبين لى عدم
دراستك لنظرية الأعداد) 
الحل مباشرة ً عن طريق تكافؤ باقى القسمة (المتعلق بنظرية الأعداد)

نبدأ من : 3^4 ≡ 1 (مود 10) ==> (3^4)^34 ≡ 1^34 (مود 10)

3^136 ≡ 1 (مود 10)  ==> ³3 × 3^136 ≡ 1 × ³3 (مود 10)

3^139 ≡ 27 (مود 10)  ==> 3^139 ≡ 7 (مود 10)

اذاً آحاد 3^139 هو 7 .  
حل آخر - آراه من وجهة نظرى مناسب لكِ -

نلاحظ ما يلى جيداً ... (يعتمد على التجربة والملاحظة)

3^1 = 3
²3 = 9
³3 = 27
3^4 = 81
3^5 = 243
3^6 = 729
.
.
.
وهكذا .. ما الذى حدث هنا ؟

نجد ان أرقام الآحاد الأولى كانت 3  ، 9  ،  7  ، 1
ثم من بعد 3^5 تعيد نفس آرقام الآحاد مرة ثانية
والمعنى اننا اذا قمنا برفع الـ 3 الى عدد ما من مضاعفات
العدد 4 فإن آحاده سيكون 1  .

وهذا ما حدث وجدنا ان 136 قريبة من 139 وهى من مضاعفات
العدد 4  .. اذاً  3^136 آحاده هو 1 .

الآن وبالترتيب السابق :

3^137   آحاده 3
3^138  آحاده 9
3^139  آحاده 7
تابع القراءة

0 كيف نوجد الجذر التكعيبى لـكلاً من 2744 ، 512 ؟

الثلاثاء، 30 أكتوبر 2012 التسميات: , ,

قم بالتحليل مباشرة ً ..

اعطى تخمينا كبيراً نوعاً ما لقابلية العدد 2744
على عدد كبير، فنحن نعلم انه يقبل القسمة
على 2 لأنه عدد زوجى، ولكن هل يوجد عدد
أكبر من ذلك حتى نتخلص من القسمة فى وقت
قصير ؟ للإجابة على هذا السؤال فأنت بحاجة
لمعرفة قواعد قابلية القسمة [مرجع 1] لا سيما
البسيطة منها، وهذا يعتمد فى الأول والأخير على
خبرتك وممارستك لتحليل الأعداد بشكل مستمر
مثلاً عندما رأيت العدد خمنت انه يقبل القسمة
على 7 لأن هناك قاعدة بسيطة [فى نفس مرجع 1]
مضمونها : يقبل عدد ما القسمة على 7 اذا كان
حاصل ضرب ضعف آحاده من العدد الأصلى (بعد حذف
الآحاد منه) يقبل القسمة على 7 .

ولديك : 2744 يقبل القسمة على 7 ولإثبات ذلك
نجرى الخطوات الآتية :

274 - 2(4) = 266 مازال العدد كبيراً ؟ ..

وهنا نكرر الخوارزمية مرة ثانية ..

26 - 2(6) = 14  وهنا نتوقف لأنه بالفعل 14
تقبل القسمة على 7 .

لاحظ : كل هذه الخطوات ربما تجرى ذهنياً وكتبتها
هنا لغرض التوضيح،  والآن نقوم بقسمة العدد
على7 بقواعد القسمة لبسيطة التى تعلمها
من اليسار الى اليمين، واذا وجد باقى جًُمع
على العدد الذى يليه وهكذا الى ان نأتى بآخر
عدد على اليمين .

2744 ÷ 7 = 392

ثم نسأل هل يقبل القسمة على 7 مرة أخرى ؟

نجرب الخوارزمية : 39 - 2(2) = 35  بالفعل يقبل ...

392 ÷ 7 = 56  ونحن نعلم أن 56 = 8 × 7

وبناء على هذا نكون قد قسمنا العدد 2744
على 7 ثلاث مرات متعاقبة ... وتبقى 8 .

اذاً : 2744 = ³7 × 8

ولكن من الأفضل ان نحلل العدد الى عوامله الأولية ..

فـ  8 = 2×2×2 = ³2

اذاً : 2744 = ³7 × 2³ = (2 × 7)³ = (14)³

وبناء عليه فإن الجذر التكعيبى لـ(2744) = 14

------------------------------------------------------

العدد الثانى صغير نسبياً، يكفى ان تعلم أن :

512 = 2^9 = (³2)³ = ³8

ولهذا فإن : الجذر التكعيبى لـ(512) = 8 
تابع القراءة

2 صندوق يحوي 12 تفاحة منها 4 تالفة اختير منها 3 تفاحات عشوائيا ما احتمال ان تكون الثلاث تفاحات سليمة ؟

الاثنين، 29 أكتوبر 2012 التسميات: ,
تحدد الإجابة بسحب طريقة السحب، فإذا كانت
طريقة السحب آنية - أى يتم سحب الثلاث كرات
معاً - فإننا نستعمل التوافيق هنا ، واذا كانت طريقة
السحب بالتتبع والتتالى فإننا نستعمل التباديل .

عدد التفاحات السليمة = 12 - 4 = 8

أولاً : اذا كانت طريقة السحب (آنية)

عدد جميع الطرق الممكنة للسحب = 12ق3

عدد جميع الطرق الممكنة لسحب ثلاث
تفاحات سليمة = 8ق3

                   8ق3         56         14
الإحتمال هنا = ـــــــــــ = ـــــــــــ = ـــــــــ
                  12ق3       220         55

ثانياً : اذا كانت طريقة السحب (بالتتالى)

نستطيع ان نستشف نفس خطوات الحل السابقة
مستخدمين هذه المرة (التباديل)

                        8ل3          14
فنقول : الإحتمال = ـــــــــــ = ــــــــــ
                        12ل3        55

هذا يعنى انه سواء كانت طريقة السحب (آنية)
او بالتتبع والتتالى فإن إحتمال سحب ثلاث كرات
سليمة هو 14\55 .
تابع القراءة

1 كيفية نشر الدالة مكعب ؟

السبت، 20 أكتوبر 2012 التسميات: ,
يجب ان تذكر نوع الدالة ...

فمثلاً ربما تقصد الآتى :

(س + أ)³ = س³ + 3أس² + 3أ²س + أ³

بعيداً عن نظرية ذات الحدين يمكنك نشر هذا المكعب من خلال مفهومك لمفكوك المربع الكامل .

مفكوك المربع الكامل = مفكوك (س + أ)²

= س² + 2أس + أ²

الآن : (س + أ)³ = (س + أ)² (س + أ)

= (س² + 2أس + أ²) (س + أ)

وهنا نستعمل خاصية عامة جداً وهى من خصائص حقل الأعداد الحقيقية بل والمركبة
أيضاً وهى خاصية التوزيع، نقوم بتوزيع س على القوس الكبير، وبعدها نوزع أ ايضاً على
نفس القوس .

= س³ + 2أس² + أ²س + أس² + 2أ²س + أ²

والآن قم بجمع الحدود المشابهة معاً

مثال : الحدين أس² ، 2أس² متشابهين فهم مختلفين فقط فى المعامل، فالأول
معامله 1 والثانى معامله 2، اذاً فالمجموع هو  (1 + 2) أس² = 3أس²  وهكذا ...

فيتكون لديك هذا الشكل أخيرا ...

(س+أ)³ = س³ + 3أس² + 3أ²س + أ³

اما اذا كان المقصود هو نشر مكعب لعدد ن من الحدود فهذا أمر آخر ...

مثال : (أ+ب+جـ)³ = أ³+ب³+جـ³ + 3[أب(أ+ب) + أجـ(أ+جـ) + ب جـ(ب+جـ)] + 6أ ب جـ

ويمكنك تعميم الطريقة بصفة عامة لعدد ن من الحدود ...

مثال آخر ...

(أ+ب+جـ+د)³ = أ³+ب³+جـ³+د³ + 3[أب(أ+ب)+ أجـ(أ+جـ) + أد(أ+د) + ب جـ(ب+جـ)

+ ب د(ب+د) + جـ د(جـ+د)] + 6(أ ب جـ + أ ب د + أ جـ د + ب جـ د)
تابع القراءة

10 كيف تتم عملية الضرب القياسى والضرب الإتجاهى ؟

الأربعاء، 17 أكتوبر 2012 التسميات: ,
سأكتب القوانين التى تعرفها أولاً .

ليكن لدينا المتجهين أ ، ب فإن :

أولاً : الضرب القياسى  : ||أ|| ||ب|| جتاهـ

ثانياً : الضرب الإتجاهى : ||أ|| ||ب|| جاهـ  فى اتجاه ع

حيث هـ هى قياس الزاوية المحصورة بين المتجهين ..
وكلاً من ||أ|| و ||ب|| تعنى أطوال كلاً منهما ..

الآن اذا كان لديك الزاوية بين المتجهين فبإمكانك
استعمال القانونين أعلاه اما اذا لم يكن لديك الزاوية
بين المتجهين وكان لديك احداثيات المتجهين فإستعمل
القوانين الآتية :

لتكن أ = (أ₁ ، أ₂ ، أ₃ ، ...) ، ب = (ب₁ ، ب₂ ، ب₃ ، ...)

فإن الضرب القياسى لهما هو :

أ ⊙ ب = أ₁ب₁ + أ₂ب₂ + أ₃ب₃ + ....

مثال أ = (3 ، 4 ، 5)  ، ب = (2 ، 7 ، 6)

أ ⊙ ب = (3×2) + (4×7) + (5×6) = 64

اما الضرب الإتجاهى فهو أمر شبيه بإيجاد محدد مصفوفة ...

لتكن أ = (أ₁ ، أ₂) ، ب = (ب₁ ، ب₂)

فإن الضرب الإتجاهى لهما هو :

أ×ب = أ₁ب₂ - أ₂ب₁

بإختصار حاصل ضرب الطرفين - حاصل ضرب الوسطين

((هذا فقط اذا كان المتجهين من الدرجة الثانية))

اما اذا كان المتجهين من الدرجة الثالثة سيكون
الأمر معقد قليلاً (كلما ذدنا من عدد الإحداثيات)

لتكن أ = (أ₁ ، أ₂ ، أ₃ ) ، ب = (ب₁ ، ب₂ ، ب₃)

نفرض أن المتجه الموجه احداثياته (س،ص،ع)

الآن نكون المحدد من الدرجة الثالثة الآتى :

س   ص   ع
 أ₁    أ₂    أ₃
ب₁  ب₂  ب₃

= س(أ₂ب₃ - أ₃ب₂) - ص[أ₁ب₃ - أ₃ب₁] + ع[أ₁ب₂ - أ₂ب₁]

لاحظ الكمية التى حصلنا عليها متجهة ..

والمعنى اننا حصلنا على متجه احداثياته س ، ص ، ع
كما هو موضح حيث كلاً من س ، ص ، ع متجهات الوحدة .
لاحظ  أ×ب ≠ ب×أ  (الضرب الإتجاهى ليس ابدالى)

ولكن : أ×ب = - ب×أ

مثال : مثال أ = (3 ، 4 ، 5)  ، ب = (2 ، 7 ، 6)

الضرب الإتجاهى لهما هو : (لاحظ انا اقصد كلاً من س ، ص ، ع متجهات
الوحدة)

س   ص    ع
3      4     5
2      7     6

= س[(4×6)-(5×7)] - ص[(3×6)-(2×5)] + ع[(3×7)-(2×4)]

= -11س -8ص + 13ع

والمعنى اننا حصلنا على متجه جديد وهو (-11 ، -8 ، 13)


أرجو ان يكون الشرح واضح ولو انى لم افصل فيه كثيراً ...
فلاش بسيط يوضح الضرب القياسى لمتجهين فلاش بسيط يوضح الضرب الإتجاهى لمتجهين


تابع القراءة

0 لماذا تم فرض وجود عدد تخيلى فى الرياضيات ؟

التسميات: ,
الأعداد المركبة تتكون من جزئين،
الجزء الأول حقيقى والجزء الثانى تخيلى، وجائت
الأعداد التخيلية نتيجة توسعة الأعداد الحقيقية
فهى لا تكفى لحل العديد من المسائل الرياضياتية .

دعنى أضرب لك مثال سريع، ولنتحدث عن الأعداد
الكمومية كالأعداد الطبيعية، والتى تستخدم من
أجل توصيف الطول والعرض ومساحة الأشياء والقياس
الموجب بصفة عامة، ولكن فى حقيقة الامر الأعداد
الطبيعية غير كافية تماماً لتوصيف الرياضيات، فإذا كنا
نريد ايجاد كميات سالبة كالسرعة السالبة والزاوية
فى اتجاه عقارب الساعة، أو توصيف الكائنات الرياضياتية
المخالفة للإشارة الموجبة بصفة عامة فكان لابد من
توسيع الحقل ليشتمل على الأعداد السالبة أيضاً ثم
جاء الصفر بعد ذلك كوسيط بينهما .

ولكن فى الواقع الكميات ليس من الضرورى أن
تكون صحية دائماً، فلدينا مثلاً شخص وزنه 75.5
كيلو او طول باب 2.3 متر ... الخ ولهذا تمت توسعة
الأعداد الى الأعداد النسبية .

وأخيراً كان لابد من وجود مجموعة الأعداد الغير
نسبية حتى يكتمل حقل الأعداد الحقيقية، وجائت
هذه الأعداد لتوصيف الكميات التى لا نستطيع وضعها
فى صورة نسبية (كسرية) بحيث يكون كلاً من
البسط والمقام أعداد صحيحة، والمقام لا يساوى
الصفر، وكمثال على ذلك النسبية التقريبية باى
او ط وهى تكتب بالتقريب 77 على 7 أو 3.14
وهى لا تساوى هذا العدد تماماً كما يفعل البعض
ويكتب مثلاً محيط الدائرة = 2 × (22\7) نق
لا هذا غير صحيح، فالنسبة التقريبية ط من
الأفضل كتابتها كما هى (الا اذا طلب منك فكها)
كمثال آخر أيضاً على عدد حقيقى غير نسبى
وهو العدد النيبيرى e باللغة الإنجليزية، هـ باللغة
العربية، وهو أيضاً له قيمة تقريبية .

e ≈ 2.718281828

ولكن فى حقيقة الأمر يحق لنا أن نسأل
مثلاً ما هو حل المعادلة x² + 1 = 0 ؟؟
والتى يمكن وضعها فى صورة أخرى :
x² = -1  كانت المشكلة الأساسية هنا
وهو عدم وجود عدد (حقيقى) مربعه يعطى
-1 او بصفة عامة يعطى قيمة سالبة، او
بتوصيف هندسى نقول لا توجد مساحة
مربع قيمته سالبة .

♣ ما هى المشكلة الأساسية ؟

• المشكلة الأساسية هى عدم وجود حل فى IR
اى فى مجموعة الأعداد الحقيقية، اذاً ما المانع ان
نفرض مجموعة تحمل أعداداً لا وجود لها فى الواقع
وهى الأعداد التخيليلة ونكون بذلك قد خلصنا من
هذه المشكلة .

الآن : x² = -1  ومع أخذ الجذر التربيعى للطرفين

x = i   أو   x = -i  حيث  i وحدة تخيليلة = جذر(-1)

فى البداية تبدو الفكرة غير مقبولة عند البعض
لا سيما الذين يدرسون ولأول مرة الأعداد المركبة
وحتى فى المدارس ما قبل دراسة رياضيات 2 فى
المرحلة الثانية كنا نقول أن المعادلة ليس لها حل
ولكن حتى نكون أكثر دقة نقول أن المعادلة ليس
لها فى IR أو فى مجموعة الأعداد الحقيقية .

كميات تخيلية
----------------

هذه عنوان فرعى وضعته تماشياً مع الكميات
الأخرى التى ذكرتها، فما هى الكميات التخيلية ؟

• الكميات التخيلية هى كميات لا وجود لها فى
الواقع، ولكن الرياضيات أو منطق الرياضيات يرحب
بهذا الأمر بحفاوة بالغة، نعم ليس لها وجود فى
الواقع لكن لها وجود كبير جداً فى ساحة الرياضيات
والتى لا تهتم بدراسة الواقع وحده فحسب بل تهتم
بدراسة الكائنات التجريدية ومن ضمن هذه الكائنات
الأعداد التخيلية، ولا اريد ان أدخل فى تفاصيل أكثر
من ذلك كالهندسة الكهربائية وغيرها من فروع علمية
يمكنك البحث عنها، والتى يرددها كثيريين وكأن الأعداد
التخيلية صُنعت لهذا الغرض !!!

♣ طالما أن الأعداد التخيلية ليست فى واقعنا
فلماذا يوجد اهتمام كبير بدراستها بل ويوجد
لها فرع كامل فى الرضيات يسمى بالتحليل العقدى
أو التحليل المركب ؟

• فى الحقيقة تحدثت عن (وجهة نظرى) فى هذا
الموضوع مرات عديد فقلت فمعادلات رياضياتية
بسيطة كانت ام معقدة تستطيع ان تتحول من
شىء تخيلى الى شىء حقيقى فما رأيك فى هذه
الأمر ؟

وسأضرب مثال بسيط على ذلك كى أبين لك
ما يحدث فالمسألة مسألة تبسيط مقادير أو
بنى جبرية فى الرياضيات لا أكثر ولا أقل اى
هى مسألة انتقال من شكل الى آخر ..

لتكن x عدد حقيقى وكانت $f(x) = \cos(x)$

نعلم أن مدى الدالة هو الفترة المغلقة [1 , -1]
وبالتأكيد هذه الفترة تحتوى على جميع الأعداد
الحقيقية من -1 الى 1 فما فيهم -1 ، 1 .

الآن يمكن وضع الدالة السابقة فى صورة مختلفة .

$$\cos(x) = \frac{e^{ix} + e^{-ix}}{2} $$

حيث e : العدد النيبيرى، i وحدة تخيلية .

السؤال : ♣ كيف لدالة مداها معرف على فترة
حقيقية ان تحوى قيماً تخيلية ؟

• فى واقع الأمر هى تبدو للوهلة الأولى انها
قيمة تخيلية، ولكن الحقيقة غير ذلك، بل هى
قيمة حقيقة فى صورة تخيلية، فمن علاقة أويلر
الشهيرة نستطيع إعادة تعريفها، وهناك عدة
طرق للتحويل حقيقة ً .

لدينا :  $e^{ix} = \cos(x) + i \sin(x)$

و لدينا : $e^{-ix} = \cos(x) - i \sin(x)$

بجمع المعادلتين معاً نجد ان الجزء
التخيلى الموجب يتختصر مع الجزء
التخيلى السالب فينتج لنا فقط
الأجزاء الحقيقية ..

$e^{ix} + e^{-ix} = 2 \cos(x)$

ولكن $\cos(x)$  معرفة على IR
اذاً $e^{ix} + e^{-ix}$ عدد حقيقى أيضاً .
ينتمى للفترة [1 , -1] .

لدينا أيضاً العلاقة : $e^{i \pi} + 1 = 0$

حيث $\pi$ النسبية التقريبة 3.14

يمكن وضع المعادلة على الصورة :

$$e^{i \pi} = -1 $$
لاحظ كيف أن الطرف الأيسر يحتوى على
قيمة تخيلية فى الأس الا أن النتيجة النهائية
عدد حقيقى وهو -1  ...

موضوع مشابه (ما أهمية الأعداد العقدية فى الرياضيات ؟)
تابع القراءة

1 كيف نثبت انه لكل n عدد طبيعى فإن n^5 - n تقبل القسمة على 5 ؟

الاثنين، 15 أكتوبر 2012 التسميات: ,
بطرق كثيرة تستطيع ان تثبت ذلك .. اذكر واحدة

العلاقة هى :  n^5 - n  بوضع n=1 فإن العلاقة
صحيح، والآن نفرض أن عندما n = k فإن العلاقة
صحيحة من أجل k عدد طبيعى، ثم نركز جهدنا
لإثبات صحة العلاقة من أجل n = k+1

n^5 - n = (k+1)^5 - (k+1)     l

تستطيع فك k+1 الكل أس 5 بنظرية ذات الحدين ...

نفرض أن العبارة هى E (حتى لا أكررها)

E = k^5 + 5k^4 + 10k³ + 10k² + 5k + 1 - k - 1

E = k^5 - k  + 5k^4 + 10k³ + 10k² + 5k

لاحظ عوامل الحدود، نعلم أن 5 ، 10 تقبل
القسمة على 5 ، ونحن فرضنا صحة العلاقة
صحيحة من أجل k^5 - k اذاً المقدار كله
يقبل القسمة على 5 ويسمى هذا الإثبات
(الإستقراء الرياضى)

ملحوظة : العبارة أيضاً تقبل القسمة على 3

الإثبات : n^5 - n = n(n^4 - 1) = n(n²-1)(n+1)  l

E = n(n-1)(n+1)(n²+1)   l

لاحظ :  n(n-1)(n+1) j تعنى حاصل ضرب ثلاثة
أعداد متتالية وهى حتماً تقبل القسمة على 3
ليس هذا وفقط بل تقبل القسمة على 3! = 6

اذاً المقدار الذى وضعته يقبل القسمة على :
3 ، 5 ، 6  معاً من أجل n عدد طبيعى .

==============================
اليك حل آخر عن طريقة مفهوم الباقى .

وصلنا سابقاً الى أن : E = n(n-1)(n+1)(n²+1) l

العدد الطبيعى n له خمس إحتمالات فقط .

1) يقبل القسمة على 5 (الباقى 0)
2) باقى القسمة على 5 = 1
3) باقى القسمة على 5 = 2
4) باقى القسمة على 5 = 3
5) باقى القسمة على 5 = 4

فى الحالة الأولى : اذا كانت n تقبل القسمة
على 5 فإن العبارة E تقبل القسمة على 5
لأن أحد عواملها n .

الحالة الثانية : فى حالة n باقى قسمتها على
5 هو 1 ، وتكتب بهذه الصيغة n ≡ 1 (mod 5) l

بطرح 1 من الطرفين :  n - 1 ≡ 0 (mod 5)  l

ولكن n - 1 ايضاً أحد عوامل العبارة E اذاً فى
هذه الحالة أيضاً العبارة E تقبل القسمة على 5 .

الحالة الثالثة :  n ≡ 2 (mod 5) l  بتربيع الطرفين ..

n² ≡ 4 (mod 5)  l  بإضافة 1 للطرفين ...

n²+1 ≡ 5 (mod 5) l  ومنها  n²+1 ≡ 0 (mod 5)  l

اذاً الحالة الثالثة تحقق أيضاً لأن n²+1 أحد عوامل
العبارة E .

الحالة الرابعة :  n ≡ 3  بتربيع الطرفين مع إضافة ..

n²+1 ≡ 9 + 1 (mod 5)  l  ومنها  n²+1 ≡ 0 (mod 5) l

اذاً الحالة الرابع تحقق ...

الحالة الخامسة :  n ≡ 4 (mod 5)  l

بإضافة 1 للطرفين :  n+1 ≡ 5 (mod 5)  l

هذا يعنى أن :  n+1 ≡ 0 ( mod 5)  l

ولكن n+1  أحد عوامل العبارة E أيضاً ...

اذاً فى كل الحالات فإن العبارة E تقبل القسمة على 5 .

================================

مثلث باسكال - انظر السطر 1  5  10  10  5  1
طريقة أخرى سهلة (تحتاج فقط ال قليل من التركيز)

نفرض أن n ≡ r (mod 5)    l

اذاً :  n = 5m + r  حيث كلاً من r , m طبيعيان .

بالتعويض ...

n^5 - n = (5m + r)^5 - 5m - r

ولا تتعب نفسك فى فك القوس بمفكوك ذات
الحدين، كل ما فى الأمر هو اننا سندرس عوامل
ذات الحدين من خلال مثلث باسكال :



فنجد أن العوامل هى :

1   5   10  10  5  1

هذا يعنى ان اهتمامنا سينصب نحو الحد الأول
والأخير فقط لأن كلاً من 5 ، 10 يقبل القسمة
على 5 .

الآن معامل الحد الأول هو 1 لكن هذه ليست
الحقيقة كاملة فالحد الأول داخل القوس هو 5m
فمهما ضُرب او روفع الى عدد طبيعى فسيظل
يقبل القسمة على 5 .. انتهينا من هذه اذا بقى
لدينا الحد الأخير والذى بعد فك القوس سكون r^5
لدينا  سالب 5m يقبل القسمة على 5 دائماً  ، فى
الأخير يتبقى لدينا هذين الحدين r^5 - r والمعنى
أن n^5 - n  يقبل القسمة على 5 اذا وفقط اذا
r^5 - r  .. لكن ما هو r ؟

الإجابة : r هو بواقى العدد 5

أى أن : r = {0 ,  1 , 2 , 3 , 4}   l

فقط لن يخرج r عن هذا المفهوم (5 احتمالات فقط)

والمعنى انك ستعوض عن r من 0 الى 5 فى العلاقة
r^5 - r  فإذا قبلت القسمة على 5 فإن العبارة E
الأساسية تقبل القسمة على 5 وهذا حدث حقيقى .

اذاً : العبارة E = n^5 - n تقبل القسمة على 5 .
=============================
واليك الإثبات فى سطر (مبرهنة) فيرما الصغرى
(إضغط هنا) وإقرإ مضمون المبرهنة اذا كنت
مهتم بنظرية الأعداد او كنت تعرفها فسيكون
الأمر أفضل، ليس هذا وفقط بل المبرهنة تبتعد
لما هو أكثر من ذلك (من أجل n عدد صحيح)

المبرهنة هى :  a^p ≡ a (mod p)  l

حيث a عدد صحيح ، p عدد أولى .

لدينا n عدد صحيح ، ولدينا  5 عدد أولى .

اذاً مباشرة ً :  n^5 ≡ n (mod 5)  l

ومنها           n^5 - n ≡ 0 (mod 5)   l

هذا يعنى فى مفهوم التطابقات أن : n^5 - n
تقبل القسمة على 5 . 
تابع القراءة
 
mathematics problem solving © 2010 | تعريب وتطوير : سما بلوجر | Designed by Blogger Hacks | Blogger Template by ياعرب