Processing math: 100%
  • 400_F_28612555_2WG0UNTnuxk3CHoqSckYkjMe1yexlYXd
  • stock-photo-mathematics-background-22109443
  • stock-photo-mathematics-background-22109443
  • stock-photo-11722429-math-geometry-background
  • stat4u_cover_eng
  • .com/
  • stock-vector-math-background-73955404
  • Eulers_formula
  • math-wallpapers-backgrounds-for-powerpoint
  • 81097-Royalty-Free-RF-Clipart-Illustration-Of-A-Math-Problem-Background-On-Ruled-Paper
  • matematica
  • binary_heart
  • 5pascaltri1
  • allconics
  • Mat_Plato4
  • Maclaurin_sine
  • be905f6ac2486c334186459a4b3a8ef0
  • unitcirc
  • 22706
  • zeta
  • WindowsLiveWriterTaylorSeriesApproximationIllustrated9min_A7C5taylorSeries_thumb
  • matematik01
  • funny-t-shirt-keep-it-real
  • funny%252Bexam%252Banswer%252B003
  • math3
  • funny-math-pic-1
  • 03-math
  • MathFail1
  • 00630-funny-cartoons-math-brain
  • 2007-11-26-graduate-topology-true-story
  • m104027
  • test.jpg
  • worldmathday
  • mazin_mathematics2
  • mickeymouse

كيفية اثبات أن مشتقة س^ن = ن س^(ن-1)

الاثنين، 19 نوفمبر 2012 التسميات:

تستطيع اثباتها بالإستقراء الرياضى على ن .

العبارة صحيحة من أجل ن = 1  لأن مشتقة س هى 1

1 = 1س^0  حيث س لا تساوى الصفر .

نفرض أن العبارة صحيحة من أجل ن = ك

اى اننا نفرض صحة ان مشتقة س^ك = ك س^(ك-1)

والآن نبرهن على صحة العبارة عندما ن = ك+1

(س^(ك+1))  َ= (س^ك × س) َ

انت الآن بحاجة الى تطبيق قاعدة حاصل الضرب product rule

مشتقة الاول × الثانى + مشتقة الثانى × الأول

= (س^ك) َ س + س^ك

ولكن (س^ك) َ = ك س^(ك-1)     (فرضاً كما بينا)

اذاً : (س^(ك+1))  َ = ك س^(ك-1)×س + س^ك

==> نجمع الأسس لأن الأساسات متشابهة

= ك س^ك + س^ك   بأخذ س^ك عامل مشترك ...

= (ك+1) س^ك   وهو المطلوب اثباته ....... كيف ؟؟

لاحظ تبعاً للقاعدة فإن مشتقة س^(ك+1) = (ك+1) س^ك

وهذا ما حصلنا عليه، اذاً العبارة صحيحة .

ولكن ماذا لو كنا نريد الإثبات بدون استعمال قاعدة حاصل الضرب ؟

تستطيع اثبات ذلك عن طريق اللوغاريتم الطبيعى ...

نفرض أن د(س) = س^ن  بأخذ لط للطرفين ...

لط[د(س)] = ن لط(س)   نشتق الطرفين بالنسبة لـ س

    دَ(س)        ن
= ـــــــــــــ = ــــــــــ   اذاً دَ(س) س = ن د(س)
    د(س)       س

           ن د(س)     ن س^ن
دَ(س) = ــــــــــــــ = ــــــــــــــــ = ن س^(ن-1)
             س              س

وأخيراً يمكنك اثباتها عن طريق القانون العام للإشتقاق .

                        د(س+هـ) - د(س)
دَ(س) = نهـــــــــا ـــــــــــــــــــــــــــــــ
           هـ←0             هـ

0 التعليقات:

إرسال تعليق

 
mathematics problem solving © 2010 | تعريب وتطوير : سما بلوجر | Designed by Blogger Hacks | Blogger Template by ياعرب