Processing math: 100%
  • 400_F_28612555_2WG0UNTnuxk3CHoqSckYkjMe1yexlYXd
  • stock-photo-mathematics-background-22109443
  • stock-photo-mathematics-background-22109443
  • stock-photo-11722429-math-geometry-background
  • stat4u_cover_eng
  • .com/
  • stock-vector-math-background-73955404
  • Eulers_formula
  • math-wallpapers-backgrounds-for-powerpoint
  • 81097-Royalty-Free-RF-Clipart-Illustration-Of-A-Math-Problem-Background-On-Ruled-Paper
  • matematica
  • binary_heart
  • 5pascaltri1
  • allconics
  • Mat_Plato4
  • Maclaurin_sine
  • be905f6ac2486c334186459a4b3a8ef0
  • unitcirc
  • 22706
  • zeta
  • WindowsLiveWriterTaylorSeriesApproximationIllustrated9min_A7C5taylorSeries_thumb
  • matematik01
  • funny-t-shirt-keep-it-real
  • funny%252Bexam%252Banswer%252B003
  • math3
  • funny-math-pic-1
  • 03-math
  • MathFail1
  • 00630-funny-cartoons-math-brain
  • 2007-11-26-graduate-topology-true-story
  • m104027
  • test.jpg
  • worldmathday
  • mazin_mathematics2
  • mickeymouse

ادرس اشتقاق الدالة الآتية د(س) = أس³ + ب س² + جـ س + د من حيث ...

الاثنين، 7 نوفمبر 2011 التسميات: ,
برهن اذا امتلكت الدالة : د(س) = أس³ + ب س² + جـ س + د
نقطتين حرجتين فان نقطة الانقلاب تقع في منتصف المسافة بينهما واذا امتلكت نقطة حرجة واحدة فقط فهي نقطة انقلاب .
الحل : -



د(س) = أس³ + ب س² + جـ س + د
دَ(س) = 3أس² + 2ب س + جـ
دً(س) = 6أس + 2ب
ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
الإحتمال الأول انها دالة تمتلك نقطتين حرجتين، نساوى المشتقة
الأولى بـ صفر .

3أس² + 2ب س + جـ = 0

الحل بالقانون العام : المميز = جذر(4ب² - 12أجـ) = 2جذر(ب² - 3أجـ)

            -2ب ± 2جذر(ب² - 3أجـ)             -ب ± جذر(ب² - 3أجـ)
س = ـــــــــــــــــــــــــــــــــــــــــــــــــ = ــــــــــــــــــــــــــــــــــــــــــــ
                      6أ                                        3أ

ولكن متصف الإحداثى السينى لهما

     -ب + جذر(ب² - 3أجـ)     -ب - جذر(ب² - 3أجـ)
= ـــــــــــــــــــــــــــــــــــ + ـــــــــــــــــــــــــــــــــــــ
           6أ                               6أ

     -2ب         -ب
= ـــــــــــ = ـــــــــــــــــ
     6أ           3أ

من أخرى نقطة الإنقلاب نستنتجها من خلال تصفير المشتقة الثانية ..
6أس + 2ب = 0  ومنها 6أس = -2ب  ، ومنها  3أس = -ب

                    -ب
ومنها  س = ـــــــــــــــ = نقطة المنتصف للنقطتين الحرجتين ( المطلوب الأول )
                     3أ


المطلوب الثانى اذا تحقق يتحقق معه الآتى :-
يجب ان تكون المشتقة الأولى عبارة عن مربع كامل ( لماذا ؟ )
ولما كانت المشتقة الأولى عبارة عن مربع كامل فإن ما تحت الجذر = 0
او بمعنى ادق المميز = 0

          -ب
س = ـــــــــــ = نقطة المنتصف ( فى المطلوب الأول )
          3أ

وهى بمثابة نقطة انقلاب فى حالة مساواه المشتقة الثانية بـ صفر .



0 التعليقات:

إرسال تعليق

 
mathematics problem solving © 2010 | تعريب وتطوير : سما بلوجر | Designed by Blogger Hacks | Blogger Template by ياعرب