Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/AMS/Regular/BBBold.js
  • 400_F_28612555_2WG0UNTnuxk3CHoqSckYkjMe1yexlYXd
  • stock-photo-mathematics-background-22109443
  • stock-photo-mathematics-background-22109443
  • stock-photo-11722429-math-geometry-background
  • stat4u_cover_eng
  • .com/
  • stock-vector-math-background-73955404
  • Eulers_formula
  • math-wallpapers-backgrounds-for-powerpoint
  • 81097-Royalty-Free-RF-Clipart-Illustration-Of-A-Math-Problem-Background-On-Ruled-Paper
  • matematica
  • binary_heart
  • 5pascaltri1
  • allconics
  • Mat_Plato4
  • Maclaurin_sine
  • be905f6ac2486c334186459a4b3a8ef0
  • unitcirc
  • 22706
  • zeta
  • WindowsLiveWriterTaylorSeriesApproximationIllustrated9min_A7C5taylorSeries_thumb
  • matematik01
  • funny-t-shirt-keep-it-real
  • funny%252Bexam%252Banswer%252B003
  • math3
  • funny-math-pic-1
  • 03-math
  • MathFail1
  • 00630-funny-cartoons-math-brain
  • 2007-11-26-graduate-topology-true-story
  • m104027
  • test.jpg
  • worldmathday
  • mazin_mathematics2
  • mickeymouse

اوجد مساحة شبه المنحرف المبين بالرسم

الخميس، 17 نوفمبر 2011 التسميات: ,
trapezoidal






أ ب جـ د شبه منحرف متساوى
الساقين، أ ب يوازى دجـ ، لتكن و نقطة تقاطع قطريه بحيث
تحقق العلاقة  وأ / وجـ = 1\3   (( هذه الخطوة للتصحيح ))
فإذا علمت ان مساحة المثلث ب و جـ = 15 فإن مساحة
شبه المنحرف أ ب جـ د = ؟؟

الحل : تعريفات لن اذكرها .. جاو = جا الزاوية المكملة لها
مساحة المثلث = ½ حاصل ضرب طول اى ضلعين فى جيب
الزاوية المحصورة بينهم .. ، نظرية هامة فى الهندسة المستوية
اذا رسما مثلثان على قاعدة وفى جهة واحدة منها ، ينحصران
بين مستقيمين متوازيين، كانا متساويان فى المساحة ( على ما اذكر )

%25D8%25B4%25D8%25A8%25D9%2587+%25D9%2585%25D9%2586%25D8%25AD%25D8%25B1%25D9%2581


اذاً : مساحة المثلث أ د جـ = مساحة المثلث ب د جـ
ولكن المثلث و د جـ ( مشترك بينهم ) اذاً مساحة المثلث
أ و د = مساحة المثلث ب و جـ = 15

وايضاً هناك تشابه بين المثلثين و أ ب ، و د جـ  حيث يحقق
ان ( خطوة لن اذكرها وهى عبارة نسب بين اطوال اضلاع )
نستنتج منها ما هو موضح بالرسم ..

نأتى الى المثلث الذى مساحته 15 وحدة مربعة
حيث نستنتج منه الآتى : ½ 3 م² جاو = 15
اذاً : م² جاو = 10  ومنها  :

             10
جاو = ــــــــــــــ
             م²


الآن وبكل بساطة نستطيع ايجاد مساحة كلاً من المثلثين و د جـ ، و أ ب
اولاً مساحة المثلث و أ ب = ½ م² جاو  بالتعويض عن جاو

                                      10
مساحة المثلث = ½ م² × ـــــــــــــ = 5 وحدات مربعة
                                     م²

                                                 10
مساحة المثلث و د جـ = ½ 9 م² × ــــــــــــــ = 45 وحدة مربعة
                                                 م²


اذاً مساحة شبه المنحرف أ ب جـ د = (2×15) + 45 + 5 = 80 وحدة مربعة

0 التعليقات:

إرسال تعليق

 
mathematics problem solving © 2010 | تعريب وتطوير : سما بلوجر | Designed by Blogger Hacks | Blogger Template by ياعرب