Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/AMS/Regular/BBBold.js
  • 400_F_28612555_2WG0UNTnuxk3CHoqSckYkjMe1yexlYXd
  • stock-photo-mathematics-background-22109443
  • stock-photo-mathematics-background-22109443
  • stock-photo-11722429-math-geometry-background
  • stat4u_cover_eng
  • .com/
  • stock-vector-math-background-73955404
  • Eulers_formula
  • math-wallpapers-backgrounds-for-powerpoint
  • 81097-Royalty-Free-RF-Clipart-Illustration-Of-A-Math-Problem-Background-On-Ruled-Paper
  • matematica
  • binary_heart
  • 5pascaltri1
  • allconics
  • Mat_Plato4
  • Maclaurin_sine
  • be905f6ac2486c334186459a4b3a8ef0
  • unitcirc
  • 22706
  • zeta
  • WindowsLiveWriterTaylorSeriesApproximationIllustrated9min_A7C5taylorSeries_thumb
  • matematik01
  • funny-t-shirt-keep-it-real
  • funny%252Bexam%252Banswer%252B003
  • math3
  • funny-math-pic-1
  • 03-math
  • MathFail1
  • 00630-funny-cartoons-math-brain
  • 2007-11-26-graduate-topology-true-story
  • m104027
  • test.jpg
  • worldmathday
  • mazin_mathematics2
  • mickeymouse

اوجد تكامل 2س * [جاس]^4 دس

الأربعاء، 21 ديسمبر 2011 التسميات:


∫2س جا^4(س) دس

اولاً نفك المقدار جا^4(س)

جا^4(س) = [جا²س]²

= [½(1-جتا2س)]²

= [¼(1 - 2جتا2س + جتا²(2س)]

= [¼(1 - 2جتا2س + ½(1+جتا(4س)]

= ¼ - ½جتا2س + ⅛(1+جتا(4س)

= ¼ - ½جتا2س + ⅛ + ⅛جتا(4س)

= ⅜ - ½جتا2س + ⅛جتا(4س)

نقوم بضرب ذلك المقدار فى س ، فيصبح

= ⅜س - ½س جتا2س + ⅛س جتا(4س)

ويتضح من خلاله ان التكامل اعلاه ..
∫2س جا^4(س) دس =

2[⅜∫س دس - ½∫س جتا2س دس + ⅛∫س جتا(4س) دس ]

نأخذ كل تكامل على حدى .. اولاً
⅜∫س دس = 3\16 س²

التكامل الثانى :

- ½∫س جتا2س دس

نفرض ان : ف = س
اذاً : دف = دس
، وان : دق = جتا2س دس
بمكاملة الطرفين ..

ق = ½ جا2س ،، بالتعويض ..

- ½∫س جتا2س دس

= -½[½س جا2س - ½∫جا2س دس ]

=  -½[½س جا2س + ¼ جتا2س]

= -¼ س جتا2س - ⅛جتا2س

وأخيراً نوجد التكامل الأخير ..
⅛∫س جتا(4س) دس

نضع : ف = س ، ومنها دف = دس
دق = جتا(4س)دس ومنها ق =¼ جا(4س)

⅛∫س جتا(4س) دس

= ⅛[¼س جا(4س) - ¼ ∫جا(4س) دس]

= ⅛[¼س جا(4س) + (1\16)جتا(4س) ]

= (1\32) س جا(4س) + (1\128) جتا(4س)

اذاً التكاملا اعلاه .. ∫2س جا^4(س) دس

= 2[ 3\16 س² -¼ س جتا2س - ⅛جتا2س
+(1\32) س جا(4س) + (1\128) جتا(4س)] + ث


0 التعليقات:

إرسال تعليق

 
mathematics problem solving © 2010 | تعريب وتطوير : سما بلوجر | Designed by Blogger Hacks | Blogger Template by ياعرب