Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/AMS/Regular/Main.js
  • 400_F_28612555_2WG0UNTnuxk3CHoqSckYkjMe1yexlYXd
  • stock-photo-mathematics-background-22109443
  • stock-photo-mathematics-background-22109443
  • stock-photo-11722429-math-geometry-background
  • stat4u_cover_eng
  • .com/
  • stock-vector-math-background-73955404
  • Eulers_formula
  • math-wallpapers-backgrounds-for-powerpoint
  • 81097-Royalty-Free-RF-Clipart-Illustration-Of-A-Math-Problem-Background-On-Ruled-Paper
  • matematica
  • binary_heart
  • 5pascaltri1
  • allconics
  • Mat_Plato4
  • Maclaurin_sine
  • be905f6ac2486c334186459a4b3a8ef0
  • unitcirc
  • 22706
  • zeta
  • WindowsLiveWriterTaylorSeriesApproximationIllustrated9min_A7C5taylorSeries_thumb
  • matematik01
  • funny-t-shirt-keep-it-real
  • funny%252Bexam%252Banswer%252B003
  • math3
  • funny-math-pic-1
  • 03-math
  • MathFail1
  • 00630-funny-cartoons-math-brain
  • 2007-11-26-graduate-topology-true-story
  • m104027
  • test.jpg
  • worldmathday
  • mazin_mathematics2
  • mickeymouse

ما هو تكامل قا^ن (س) ؟

السبت، 10 ديسمبر 2011 التسميات:

 التكامل يتم بالتجزىء اذاً كانت درجة الأس فردية
اما اذا كانت زوجية كما فى مثالك هذا ..

∫ قا^8(س) دس

= ∫ قا²س . (قا²س)³ دس

= ∫ قا²س . (1 + ظا²س)³ دس

استعمل نظرية ذات الحدين ..

= = ∫ قا²س . (1+3ظا²س+3ظا^4س+ظا^6(س) ) دس

نفرض ان ظاس = ص  نفاضل الطرفين بالنسبة  لـ س

دص                             دص
ــــــ = قا²س   اذاً دس = ـــــــــــ
دس                           قا²س

بالتعويض ...

∫ (1+3ص²+3ص^4+ص^6 ) دص

والتكامل عادى جداً ..

= ص + ص³ + 3\5 ص^5 + 1\7 ص^7  + ث

ولكن ص = ظاس  بالتعويض

= ظاس + ظا³س + 3\5 ظا^5س + 1\7 ظا^7س + ث

حيث ث ثابت التكامل .. اى ان الصيغة العامة اذا كانت
درجة الأس ( ن مثلاً زوجية )

∫ قا^ن(س) دس

= ∫قا²س . (1 + ظا²س)^(ن/2 - 1)

وبعذ ذلك تستعمل نظرية ذات الحدين، ثم
تكامل بالتعويض .... وهكذا
ويمكن اثبات ذلك بالإستقراء على ن  ..
 


مثال اذا كانت درجة ن فردية :

∫قا^5(س) دس

= ∫قا²س قا³س دس

نفرض ان : ف = قا³س  بمفاضلة الطرفين
بالنسبة لـ س

دف
ــــــ = 3قا³س ظاس
دس

اذاً : دف = 3قا²س ظاس دس

ونفرض ان : دق = قا²س دس بمكاملة الطرفين
بالنسبة لـ س

ق = ظاس

اذاً:

∫قا^5(س) دس

= قا³س ظاس - 3∫ظا²س قا³س دس


= قا³س ظاس - 3∫ قا³س ( قا²س - 1 )  دس

= قا³س ظاس - 3∫ (قا^5(س) - قا³س )  دس

= قا³س ظاس - 3∫ قا^5(س) دس + 3 ∫ قا³س  دس

ولكن ∫ قا^5(س) دس = التكامل الأصلى ..
نفرض انها = م

4م =  قا³س ظاس + 3 ∫ قا³س  دس

اذاً :

∫قا^5(س) دس

= ¼ (قا³س ظاس + 3 ∫ قا³س  دس )

كامل مرة أخرى قا³س

▓ ولتعميم تلك القاعدة على التكامل بالتجزىء فقط نفعل ما يلى ▓


∫قا^ن (س) دس

= ∫ قا²س . قا^(ن-2) (س) دس

نفذ نفس الخطوات السابقة ..
نفرض ان : ف = قا^(ن-2) (س)

 
اذاً : دف = (ن-2) قا^(ن-2) (س) ظا(س) دص

دق = قا²س دس  ومنها ق = ظاس

بالتعويض .. التكامل اصبح ...

قا^(ن-2) (س) ظاس - ∫ (ن-2) قا^(ن-2) (س) ظا²س دس

= قا^(ن-2) (س) ظاس -
(ن-2)∫ قا^(ن-2) (س) (قا²س - 1 ) دس

= قا^(ن-2) (س) ظاس -
(ن-2)∫ قا^ن (س) + (ن-2) ∫ قا^(ن-2) (س)  دس

= قا^(ن-2) (س) ظاس -
(ن-2)∫ قا^ن (س) دس
+ (ن-2)∫ قا^(ن-2) (س)  دس

نفرض ان التكامل الأصلى = م

م = قا^(ن-2) (س) ظاس
- (ن-2)∫ قا^(ن-2) (س)  دس

(ن-1) م = قا^(ن-2) (س) ظاس
+ (ن-2)∫ قا^(ن-2) (س)  دس

م = 1/(ن-1) قا^(ن-2) (س) . ظا(س)
+ (ن-2)/(ن-1)∫ قا^(ن-2) (س)  دس

 int sec^n(x)dx=1/(n-1) sec^(n-2)(x) tan(x) + (n-2)/(n-1)
∫ sec^(n-2) dx


ثم كرر نفس الخطوات السابقة اذا
تطلب الأمر تجزىء اكثر من مرة ..
وهذه هى الصيغة العامة لإجراء
اى تكامل على هذه الشاكلة

∫قا^ن (س) دس

1 التعليقات:

Odai يقول... 1

نهاية س تؤول للصفر ( جا^2(2س^3)/(ظا^3(س^2)))

إرسال تعليق

 
mathematics problem solving © 2010 | تعريب وتطوير : سما بلوجر | Designed by Blogger Hacks | Blogger Template by ياعرب