Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/AMS/Regular/Main.js
  • 400_F_28612555_2WG0UNTnuxk3CHoqSckYkjMe1yexlYXd
  • stock-photo-mathematics-background-22109443
  • stock-photo-mathematics-background-22109443
  • stock-photo-11722429-math-geometry-background
  • stat4u_cover_eng
  • .com/
  • stock-vector-math-background-73955404
  • Eulers_formula
  • math-wallpapers-backgrounds-for-powerpoint
  • 81097-Royalty-Free-RF-Clipart-Illustration-Of-A-Math-Problem-Background-On-Ruled-Paper
  • matematica
  • binary_heart
  • 5pascaltri1
  • allconics
  • Mat_Plato4
  • Maclaurin_sine
  • be905f6ac2486c334186459a4b3a8ef0
  • unitcirc
  • 22706
  • zeta
  • WindowsLiveWriterTaylorSeriesApproximationIllustrated9min_A7C5taylorSeries_thumb
  • matematik01
  • funny-t-shirt-keep-it-real
  • funny%252Bexam%252Banswer%252B003
  • math3
  • funny-math-pic-1
  • 03-math
  • MathFail1
  • 00630-funny-cartoons-math-brain
  • 2007-11-26-graduate-topology-true-story
  • m104027
  • test.jpg
  • worldmathday
  • mazin_mathematics2
  • mickeymouse

كيف نوجد هذا العدد الذى يقبل تلك الشروط فى قابلية القسمة ؟

الأحد، 23 سبتمبر 2012 التسميات: ,
عدد يقبل القسمة على 10 ويتبقى 9
ويقبل القسمة على 9 ويتبقى 8
ويقبل القسمة على 8 ويتبقى 7
ويقبل القسمة على 7 ويتبقى 6
.
.
وهكذا
الى ان يقبل القسمة على 2 ويتبقى 1
فما هو هذا العدد ؟
بداية ً نفرض أن هذا العدد هو س، وبترجمة ما
سبق الى مفاهيم أساسية فى نظرية الأعداد
فيتكون لدينا هذا النظام من التطابقات .

(ملحوظة : سأعتبر أن س عدداً طبيعياً)

س+1 ≡ 0 (مود 10)
س+1 ≡ 0 (مود 9)
س+1 ≡ 0 (مود 8)
.
.
.
س+1 ≡ 0 (مود 2)

وكأننا نبحث عن العدد س+1 الذى قبل القسمة
على جميع الأعداد من 1 الى 10 بدون باقٍ .

الإجابة هى المضاعف المشترك الأصغر للأعداد
من 1 الى 10 عن طريقة تحليل كل هذه الأرقام .

2 ، 3 ، 4 = ²2 ، 5 ، 6 = 2×3 ، 7 ، 8 =³2 ، 9 = ²3

10 = 2 × 5

النجد انه تكون لدينا هذه الجموعة من الأعداد الأولية
الفريدة (اى الغير مكررة)

{2 , 3 , 5 , 7}

نأخذ 2 مرفوعة لأكبر أس وكذلك 3 مرفوعة لأكبر أس ... وهكذا

المضاعف المشترك الأصغر = ³2 × ²3 × 5 × 7 = 2520

هذا يعنى أن : س+1 = 2520  ومنها س = 2519

وهذا يعتبر حل ابتدائى لـ س .

اما الحل العام نعممه على بقية المضاعفات الأخيرى
(نلاحظ اننا تعاملنا مع المضاعف المشترك الأصغر فقط)
والتعميم يكون بأخذ مضاعفات المضاعف المشترك الأصغر نفسه .

نضع : س+1 = 2520 ن

حيث ن عدد طبيعى = {1 , 2 , 3 , ...}

ومنها :  س = 2520ن − 1

لتكون مجموعة س هى :

س = {2519 , 5039 , 7559 , 10079 , .....}


والمعنى أن هذه الأعداد الموجودة فى هذه المجموعة
تحقق الشروط المطلوبه فى سؤالك عن طريق اتباع
القاعدة العامة لتوليد هذه الأعداد : س = 2520ن − 1

0 التعليقات:

إرسال تعليق

 
mathematics problem solving © 2010 | تعريب وتطوير : سما بلوجر | Designed by Blogger Hacks | Blogger Template by ياعرب