• Math background
  • Math background
  • Mathematics background
  • Mathematics background
  • Fundamentals of Statistics
  • Math graphics free wallpaper in free desktop
  • stock vector : math background
  • Math background, discrete math
  • Free Math Background for Powerpoint Slides
  • Royalty-Free (RF) Clipart Illustration of a Math
  • Mathematica -photos of some famous historical figures
  • binary system
  • Pascals triangle.
  • Conic section
  • Welcome to mathematics
  • Taylor polynomials and Taylor series -
  • ... theory of Taylor series to show that the
  • The Unit Circle
  • Graphs of the functions sin(x) and cos(x),
  • GOne of the applications of the zeta function
  • Taylor Series Approximation Illustrated
  • Matematik eğitiminin sağlıklı
  • crazy math(12)
  • crazy math(11)
  • crazy math(10)
  • crazy math(9)
  • crazy math(8)
  • crazy math(7)
  • crazy math(6)
  • crazy math(5)
  • crazy math(4)
  • crazy math(3)
  • crazy math(2)
  • crazy math(1)
  • Mickeys ears are circles which are conic sections

ما الفرق بين المتطابقة - المعادلة - القانون ؟

الاثنين، 31 أكتوبر 2011 التسميات: , ,


المعادلة هى تساوى طرفين او اكثر،
(( فى مجموعة صغيرة من الأعداد ))
المتطابقة هى ايضاً تساوى طرفين او اكثر،
لكن فى مجموعة كبيرة من الأعداد تصل
فى اغلب الأحيان الى مجموعة الأعداد الحقيقية
والمركبة معاً ..!

القانون (( هو المفهوم للمتطابقة، وسؤالك رائع فى هذه النقطة ))

وحتى لا يكون مجرد كلام يكتب بدون تطبيق، فنقوم بتطبيق الآتى ..

س+ص = 1   هذه معادلة وليست متطابقة لماذا ؟؟ هل هى قانون ؟؟

لا يوجد اطلاقاً قانون مثل هذا ، انما هى معادلة او مجر ( فرضية )
ان هناك عددان س،ص ناتج جمعهما = 1  فتعطى عدد لا نهائى من الأعداد
((لكن هذه الأعداد ليست من اختيارنا )) بمعنى .. لا يجوز ان اقول وبوضع س = 3
، ص = 2  مثلاً ؟؟ لأنها لا تحقق شرط المعادلة ..


مثال2)  س² = -2س - 1   لا يجوز ان اقول وبوضع س =  5  مثلاً للطرفين

س² +2س + 1 = 0   ومنها  (س+1)² = 0   ومنها س = -1

اذاً  5 لا تحقق المعادلة ..


مثال3) جتا²س +جا²س = 1               (( هذا قانون او متطابقة ))

وبوضع س = ص² + 2ص + 1       للطرفين

(( طبعاً لاحظ ان الطرف الايسر لا يحتوى على س ))

جتا²(ص²+2ص+1) + جا²(ص²+2ص+1) = 1

وفى هذا المثال نستطيع ان نضع س تنتمى لأى مجموعة تختارها من الأعداد
حقيقية ، مركبة .. فعندما نكتب : جتا²س + جا²س = 0
فضع س كما تشار ، ولكن لاحظ ان هذا الكلام لا ينطبق على المعادلة
حيث ان المعادلة التى بها مجهول واحد اما ان يكون لها حل واحد، واما
ان تكون مستحيلة الحل ..

مثال4) جتاس - جتاص = -2جا½(س+ص) جا‎½(س-ص)

متطابقة مثلثية تحتوى على مجهولين س،ص

وبوضع س = ص    تحصل على المطلوب 0 = 0

وبوضع  س بـ س²+2س+1   ،  ص بـ س²-2س + 1

جتا(س²+2س+1 ) - جتا(س²-2س + 1)

= -2جا½(س²+2س+1 + س²-2س + 1) جا½((س²+2س+1 ) - (س²-2س + 1) )

= -2جا½(2س² + 2 ) جا½ (4س)

= -2جا(س²+1) جا(2س)


0 التعليقات:

إرسال تعليق

 
mathematics problem solving © 2010 | تعريب وتطوير : سما بلوجر | Designed by Blogger Hacks | Blogger Template by ياعرب